Домой / 5-9 классы / Момент инерции круга относительно оси. Решение задач по сопромату. Геометрические характеристики фигур. Понятие о крутящем моменте

Момент инерции круга относительно оси. Решение задач по сопромату. Геометрические характеристики фигур. Понятие о крутящем моменте

http//:www.svkspb.nm.ru

Геометрические характеристики плоских сечений

Площадь : , dF - элементарная площадка.

Статический момент элемента площади dF относительно оси 0x
- произведение элемента площади на расстояние "y" от оси 0x: dS x = ydF

Просуммировав (проинтегрировав) такие произведения по всей площади фигуры, получаем статические моменты относительно осей y и x:
;
[см 3 , м 3 , т.д.].

Координаты центра тяжести :
. Статические моменты относительно центральных осей (осей, проходящих через центр тяжести сечения) равны нулю. При вычислении статических моментов сложной фигуры ее разбивают на простые части, с известными площадями F i и координатами центров тяжести x i , y i .Статический момент площади всей фигуры = сумме статических моментов каждой ее части:
.

Координаты центра тяжести сложной фигуры:

М
оменты инерции сечения

Осевой (экваториальный) момент инерции сечения - сумма произведений элементарных площадок dF на квадраты их расстояний до оси.

;
[см 4 , м 4 , т.д.].

Полярный момент инерции сечения относительно некоторой точки (полюса) - сумма произведений элементарных площадок на квадраты их расстояний от этой точки.
; [см 4 , м 4 , т.д.]. J y + J x = J p .

Центробежный момент инерции сечения - сумма произведений элементарных площадок на их расстояния от двух взаимно перпендикулярных осей.
.

Центробежный момент инерции сечения относительно осей, из которых одна или обе совпадают с осями симметрии, равен нулю.

Осевые и полярные моменты инерции всегда положительны, центробежные моменты инерции могут быть положительными, отрицательными или равными нулю.

Момент инерции сложной фигуры равен сумме моментов инерции составных ее частей.

Моменты инерции сечений простой формы

П
рямоугольное сечение Круг

К


ольцо

Т
реугольник

р
авнобедренный

Прямоугольный

т
реугольник

Четверть круга

J y =J x =0,055R 4

J xy =0,0165R 4

на рис. (-)

Полукруг

М

оменты инерции стандартных профилей находятся из таблиц сортамента:

Д
вутавр
Швеллер Уголок

М

оменты инерции относительно параллельных осей :

J x1 =J x + a 2 F;

J y1 =J y + b 2 F;

момент инерции относительно любой оси равен моменту инерции относительно центральной оси, параллельной данной, плюс произведение площади фигуры на квадрат расстояния между осями. J y1x1 =J yx + abF; ("a" и "b" подставляют в формулу с учетом их знака).

Зависимость между моментами инерции при повороте осей :

J x1 =J x cos 2  + J y sin 2  - J xy sin2; J y1 =J y cos 2  + J x sin 2  + J xy sin2;

J x1y1 =(J x - J y)sin2 + J xy cos2 ;

Угол >0, если переход от старой системы координат к новой происходит против час.стр. J y1 + J x1 = J y + J x

Экстремальные (максимальное и минимальное) значения моментов инерции называются главными моментами инерции . Оси, относительно которых осевые моменты инерции имеют экстремальные значения, называются главными осями инерции . Главные оси инерции взаимно перпендикулярны. Центробежные моменты инерции относительно главных осей = 0, т.е. главные оси инерции - оси, относительно которых центробежный момент инерции = 0. Если одна из осей совпадает или обе совпадают с осью симметрии, то они главные. Угол, определяющий положение главных осей:
, если  0 >0  оси поворачиваются против час.стр. Ось максимума всегда составляет меньший угол с той из осей, относительно которой момент инерции имеет большее значение. Главные оси, проходящие через центр тяжести, называются главными центральными осями инерции . Моменты инерции относительно этих осей:

J max + J min = J x + J y . Центробежный момент инерции относительно главных центральных осей инерции равен 0. Если известны главные моменты инерции, то формулы перехода к повернутым осям:

J x1 =J max cos 2  + J min sin 2 ; J y1 =J max cos 2  + J min sin 2 ; J x1y1 =(J max - J min)sin2;

Конечной целью вычисления геометрических характеристик сечения является определение главных центральных моментов инерции и положения главных центральных осей инерции. Радиус инерции -
; J x =Fi x 2 , J y =Fi y 2 .

Если J x и J y главные моменты инерции, то i x и i y - главные радиусы инерции . Эллипс, построенный на главных радиусах инерции как на полуосях, называется эллипсом инерции . При помощи эллипса инерции можно графически найти радиус инерции i x1 для любой оси х 1 . Для этого надо провести касательную к эллипсу, параллельную оси х 1 , и измерить расстояние от этой оси до касательной. Зная радиус инерции, можно найти момент инерции сечения относительно оси х 1:
. Для сечений, имеющих более двух осей симметрии (например: круг, квадрат, кольцо и др.) осевые моменты инерции относительно всех центральных осей равны между собой, J xy =0, эллипс инерции обращается в круг инерции.

Моменты сопротивления.

Осевой момент сопротивления - отношение момента инерции относительно оси к расстоянию от нее до наиболее удаленной точки сечения.
[см 3 , м 3 ]

Особенно важны моменты сопротивления относительно главных центральных осей:

прямоугольник:
; круг: W x =W y =
,

трубчатое сечение (кольцо): W x =W y =
, где = d Н /d B .

Полярный момент сопротивления - отношение полярного момента инерции к расстоянию от полюса до наиболее удаленной точки сечения:
.

Для круга W р =
.

Осевой момент сопротивления - отношение момента инерции относительно оси к расстоянию от нее до наиболее удаленной точки сечения. [см 3 , м 3 ]

Особенно важны моменты сопротивления относительно главных центральных осей:

прямоугольник:
; круг:W x =W y =
,

трубчатое сечение (кольцо): W x =W y =
, где = d Н /d B .

Полярный момент сопротивления - отношение полярного момента инерции к расстоянию от полюса до наиболее удаленной точки сечения:
.

Для круга W р =
.

Кручение

Т

акой вид деформации, при котором в поперечных сечениях возникает только одни крутящие моменты - М к. Знак крутящего момента М к удобно определять по направлению внешнего момента. Если при взгляде со стороны сечения внешний момент направлен против час.стр., то М к >0 (встречается и обратное правило). При кручении происходит поворот одного сечения относительно другого на угол закручивания -. При кручении круглого бруса (вала) возникает напряженное состояние чистого сдвига (нормальные напряжения отсутствуют), возникают только касательные напряжения. Принимается, что сечения плоские до закручивания остаются плоскими и после закручивания - закон плоских сечений . Касательные напряжения в точках сечения изменяются пропорционально расстоянию точек от оси. Из закона Гука при сдвиге: =G, G - модуль сдвига,
,
- полярный момент сопротивления круглого сечения. Касательные напряжения в центре равны нулю, чем дальше от центра, тем они больше. Угол закручивания
,GJ p - жесткость сечения при кручении .
-относительный угол закручивания . Потенциальная энергия при кручении:
. Условие прочности:
, [] =, для пластичного материала за  пред принимается предел текучести при сдвиге  т, для хрупкого материала –  в – предел прочности, [n] – коэффициент запаса прочности. Условие жесткости при кручении:  max [] – допустимый угол закручивания.

Кручение бруса прямоугольного сечения

При этом нарушается закон плоских сечений, сечения некруглой формы при кручении искривляются –депланация поперечного сечения.

Эпюры касательных напряжений прямоугольного сечения.

;
,J k и W k - условно называют моментом инерции и моментом сопротивления при кручении. W k = hb 2 ,

J k = hb 3 , Максимальные касательные напряжения  max будут посредине длинной стороны, напряжения по середине короткой стороны: =  max , коэффициенты: ,, приводятся в справочниках в зависимости от отношения h/b (например, при h/b=2, =0,246; =0,229; =0,795.

Изгиб

П
лоский (прямой) изгиб
- когда изгибающий момент действует в плоскости, проходящей через одну из главных центральных осей инерции сечения, т.е. все силы лежат в плоскости симметрии балки. Основные гипотезы (допущения): гипотеза о не надавливании продольных волокон: волокна, параллельные оси балки, испытывают деформацию растяжения – сжатия и не оказывают давления друг на друга в поперечном направлении; гипотеза плоских сечений: сечение балки, плоское до деформации, остается плоским и нормальным к искривленной оси балки после деформации. При плоском изгибе в общем случае возникают внутренние силовые факторы : продольная сила N, поперечная сила Q и изгибающий момент М. N>0, если продольная сила растягивающая; при М>0 волокна сверху балки сжимаются, снизу растягиваются. .

С
лой, в котором отсутствуют удлинения, называетсянейтральным слоем (осью, линией). При N=0 и Q=0, имеем случай чистого изгиба. Нормальные напряжения:
, - радиус кривизны нейтрального слоя, y - расстояние от некоторого волокна до нейтрального слоя. Закон Гука при изгибе :
, откуда (формула Навье):
,J x - момент инерции сечения относительно главной центральной оси, перпендикулярной плоскости изгибающего момента, EJ x - жесткость при изгибе, - кривизна нейтрального слоя.

М
аксимальные напряжения при изгибе возникают в точках, наиболее удаленных от нейтрального слоя:
,J x /y max =W x -момент сопротивления сечения при изгибе,
. Если сечение не имеет горизонтальной оси симметрии, то эпюра нормальных напряжений не будет симметричной. Нейтральная ось сечения проходит через центр тяжести сечения. Формулы для определения нормального напряжения для чистого изгиба приближенно годятся и когда Q0. Это случай поперечного изгиба . При поперечном изгибе, кроме изгибающего момента М, действует поперечная сила Q и в сечении возникают не только нормальные , но и касательные  напряжения. Касательные напряжения определяются формулой Журавского:
, гдеS x (y) - статический момент относительно нейтральной оси той части площади, которая расположена ниже или выше слоя, отстоящего на расстоянии "y" от нейтральной оси; J x - момент инерции всего поперечного сечения относительно нейтральной оси, b(y) - ширина сечения в слое, на котором определяются касательные напряжения.

Д
ля прямоугольного сечения:
,F=bh, для круглого сечения:
,F=R 2 , для сечения любой формы
,

k- коэфф., зависящий от формы сечения (прямоугольник: k= 1,5; круг - k= 1,33).

M

max и Q max определяются из эпюр изгибающих моментов и поперечных сил. Для этого балка разрезается на две части и рассматривается одна из них. Действие отброшенной части заменяется внутренними силовыми факторами М и Q, которые определяются из уравнений равновесия. В некоторых вузах момент М>0 откладывается вниз, т.е. эпюра моментов строится на растянутых волокнах. При Q= 0 имеем экстремум эпюры моментов. Дифференциальные зависимости между М, Q и q :

q - интенсивность распределенной нагрузки [кН/м]

Главные напряжения при поперечном изгибе :

.

Расчет на прочность при изгибе : два условия прочности, относящиеся к различным точкам балки: а) по нормальным напряжениям
, (точки наиболее удаленные от С); б) по касательным напряжениям
, (точки на нейтр.оси). Из а) определяют размеры балки:
, которые проверяют по б). В сечениях балок могут быть точки, где одновременно большие нормальные и большие касательные напряжения. Для этих точек находятся эквивалентные напряжения, которые не должны превышать допустимых. Условия прочности проверяются по различным теориям прочности

I-я:
;II-я:(при коэфф.Пуассона=0,3); - применяются редко.

теория Мора: ,
(используется для чугуна, у которого допускаемое напряжение на растяжение [ р ][ с ] – на сжатие).

Поиск в инженерном справочнике DPVA. Введите свой запрос:

Дополнительная информация от Инженерного cправочника DPVA, а именно - другие подразделы данного раздела:

  • Внешняя ссылка: Теоретическая механика. Сопротивление материалов. Теория механизмов и машин. Детали машин и основы конструирования. Лекции, теория и примеры решения задач. Решение задач - теормех, сопромат, техническая и прикладная механика, ТММ и ДетМаш
  • Таблица. Значения модулей продольных упругостей Е, модулей сдвигов G и коэффициентов Пуассона µ (при температуре 20 o C). Таблица прочности металлов и сплавов.
  • Вы сейчас здесь: Таблица. Изгиб. Осевые моменты инерции сечений (статические моменты сечений), осевые моменты сопротивления и радиусы инерции плоских фигур.
  • Таблица. Кручение. Геометрические характеристики жесткости и прочности для ходовых сечений при кручении прямого бруса. Осевые моменты инерции сечений (статические моменты сечений), осевые моменты сопротивления при кручении. Точка наибольшего напряжения.
  • Перевод единиц измерения модулей упругости, модулей Юнга (E), предела прочности, модулей сдвига (G), предела текучести.
  • Таблица. Расчетные данные для типовых балок постоянного сечения. Реакции левой и правой опоры, выражение изгибающего момента (и наибольший), уравнение упругой линии; значения наибольшего и углов поворота крайнего левого и правого сечения.
  • Радиусы инерции основных комбинаций сечений швеллеров, уголков, двутавров, труб, кругов... Приблизительные значения.
  • Геометрические характеристики и вес трубы и воды в трубе. Диаметр наружный 50-1420 мм, толщина стенок 1-30 мм, Площадь сечения, осевой момент инерции, полярный момент инерции, осевой момент сопротивления, полярный момент сопротивления, радиус инерции
  • Сортамент прокатной стали. Балки двутавровые ГОСТ8239-72, Швеллеры ГОСТ8240-72, Уголки равнобокие ГОСТ 8509-72. Уголки неравнобокие ГОСТ 8510-72. Моменты инерции, моменты сопротивления, радиусы инерции, статическиие моменты полуcечения...
  • Таблицы для определения несущей способности кирпичных стен и столбов
  • Таблицы - Руководство по подбору сечений элементов строительных стальных конструкций 6,8 МБ. ЦНИИПРОЕКТСТАЛЬКОНСТРУКЦИЯ, Москва, 1991, Часть 1, Часть 2, Часть 3, Часть 4
  • Таблицы подбора перемычек, прогонов и опорных плит. ВМК-41-87. АЛТАЙГРАЖДАНПРОЕКТ. Барнаул. 1987 / 2006. 0,27 МБ
  • Таблицы для подбора сечений железобетонных конструкций с ненапрягаемой арматурой. Харьковский ПРОМСТРОЙНИИПРОЕКТ. 1964. Выпуск 1. 5,07 МБ
  • Введем декартову прямоугольную систему координат O xy . Рассмотрим в плоскости координат произвольное сечение (замкнутую область) с площадью A (рис. 1).

    Статическими моментами

    Точка C с координатами (x C , y C)

    называется центром тяжести сечения .

    Если оси координат проходят через центр тяжести сечения, то статические моменты сечения равны нулю:

    Осевыми моментами инерции сечения относительно осей x и y называются интегралы вида:

    Полярным моментом инерции сечения относительно начала координат называется интеграл вида:

    Центробежным моментом инерции сечения называется интеграл вида:

    Главными осями инерции сечения называются две взаимно перпендикулярные оси, относительно которых I xy =0. Если одна из взаимно перпендикулярных осей является осью симметрии сечения, то I xy =0 и, следовательно, эти оси - главные. Главные оси, проходящие через центр тяжести сечения, называются главными центральными осями инерции сечения

    2.Теорема Штейнера-Гюйгенса о параллельном переносе осей

    Теорема Штейнера-Гюйгенса (теорема Штейнера).
    Осевой момент инерции сечения I относительно произвольной неподвижной оси x равен сумме осевого момента инерции этого сечения I с относительной параллельной ей оси x * , проходящей через центр масс сечения, и произведения площади сечения A на квадрат расстояния d между двумя осями.

    Если известны моменты инерции I x и I y относительно осей x и y, то относительно осей ν и u, повернутых на угол α, моменты инерции осевые и центробежный вычисляют по формулам:

    Из приведенных формул видно, что

    Т.е. сумма осевых моментов инерции при повороте взаимно перпендикулярных осей не меняется, т.е.оси u и v, относительно которых центробежный момент инерции сечения равен нулю, а осевые моменты инерции І u и I v имеют экстремальные значения max или min, называют главными осями сечения. Главные оси, проходящие через центр тяжести сечения, называются главными центральными осями сечения . Для симметричных сечений оси их симметрии всегда являются главными центральными осями. Положение главных осей сечения относительно других осей определяют, используя соотношение:

    где α 0 – угол, на который надо развернуть оси x и y, чтобы они стали главными (положительный угол принято откладывать против хода часовой стрелки, отрицательный – по ходу часовой стрелки). Осевые моменты инерции относительно главных осей называются главными моментами инерции :

    знак плюс перед вторым слагаемым относится к максимальному моменту инерции, знак минус – к минимальному.

    Тела m на квадрат расстояния d между осями :

    J = J c + m d 2 , {\displaystyle J=J_{c}+md^{2},}

    где m - полная масса тела.

    Например, момент инерции стержня относительно оси, проходящей через его конец, равен:

    J = J c + m d 2 = 1 12 m l 2 + m (l 2) 2 = 1 3 m l 2 . {\displaystyle J=J_{c}+md^{2}={\frac {1}{12}}ml^{2}+m\left({\frac {l}{2}}\right)^{2}={\frac {1}{3}}ml^{2}.}

    Осевые моменты инерции некоторых тел

    Моменты инерции однородных тел простейшей формы относительно некоторых осей вращения
    Тело Описание Положение оси a Момент инерции J a
    Материальная точка массы m На расстоянии r от точки, неподвижная
    Полый тонкостенный цилиндр или кольцо радиуса r и массы m Ось цилиндра m r 2 {\displaystyle mr^{2}}
    Сплошной цилиндр или диск радиуса r и массы m Ось цилиндра 1 2 m r 2 {\displaystyle {\frac {1}{2}}mr^{2}}
    Полый толстостенный цилиндр массы m с внешним радиусом r 2 и внутренним радиусом r 1 Ось цилиндра m r 2 2 + r 1 2 2 {\displaystyle m{\frac {r_{2}^{2}+r_{1}^{2}}{2}}}
    Сплошной цилиндр длины l , радиуса r и массы m 1 4 m ⋅ r 2 + 1 12 m ⋅ l 2 {\displaystyle {1 \over 4}m\cdot r^{2}+{1 \over 12}m\cdot l^{2}}
    Полый тонкостенный цилиндр (кольцо) длины l , радиуса r и массы m Ось перпендикулярна к цилиндру и проходит через его центр масс 1 2 m ⋅ r 2 + 1 12 m ⋅ l 2 {\displaystyle {1 \over 2}m\cdot r^{2}+{1 \over 12}m\cdot l^{2}}
    Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его центр масс 1 12 m l 2 {\displaystyle {\frac {1}{12}}ml^{2}}
    Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его конец 1 3 m l 2 {\displaystyle {\frac {1}{3}}ml^{2}}
    Тонкостенная сфера радиуса r и массы m Ось проходит через центр сферы 2 3 m r 2 {\displaystyle {\frac {2}{3}}mr^{2}}
    Шар радиуса r и массы m Ось проходит через центр шара 2 5 m r 2 {\displaystyle {\frac {2}{5}}mr^{2}}
    Конус радиуса r и массы m Ось конуса 3 10 m r 2 {\displaystyle {\frac {3}{10}}mr^{2}}
    Равнобедренный треугольник с высотой h , основанием a и массой m Ось перпендикулярна плоскости треугольника и проходит через вершину 1 24 m (a 2 + 12 h 2) {\displaystyle {\frac {1}{24}}m(a^{2}+12h^{2})}
    Правильный треугольник со стороной a и массой m Ось перпендикулярна плоскости треугольника и проходит через центр масс 1 12 m a 2 {\displaystyle {\frac {1}{12}}ma^{2}}
    Квадрат со стороной a и массой m Ось перпендикулярна плоскости квадрата и проходит через центр масс 1 6 m a 2 {\displaystyle {\frac {1}{6}}ma^{2}}
    Прямоугольник со сторонами a и b и массой m Ось перпендикулярна плоскости прямоугольника и проходит через центр масс 1 12 m (a 2 + b 2) {\displaystyle {\frac {1}{12}}m(a^{2}+b^{2})}
    Правильный n-угольник радиуса r и массой m Ось перпендикулярна плоскости и проходит через центр масс m r 2 6 [ 1 + 2 cos ⁡ (π / n) 2 ] {\displaystyle {\frac {mr^{2}}{6}}\left}
    Тор (полый) с радиусом направляющей окружности R , радиусом образующей окружности r и массой m Ось перпендикулярна плоскости направляющей окружности тора и проходит через центр масс I = m (3 4 r 2 + R 2) {\displaystyle I=m\left({\frac {3}{4}}\,r^{2}+R^{2}\right)}

    Вывод формул

    Тонкостенный цилиндр (кольцо, обруч)

    Вывод формулы

    Момент инерции тела равен сумме моментов инерции составляющих его частей. Разобьём тонкостенный цилиндр на элементы с массой dm и моментами инерции dJ i . Тогда

    J = ∑ d J i = ∑ R i 2 d m . (1) . {\displaystyle J=\sum dJ_{i}=\sum R_{i}^{2}dm.\qquad (1).}

    Поскольку все элементы тонкостенного цилиндра находятся на одинаковом расстоянии от оси вращения, формула (1) преобразуется к виду

    J = ∑ R 2 d m = R 2 ∑ d m = m R 2 . {\displaystyle J=\sum R^{2}dm=R^{2}\sum dm=mR^{2}.}

    Толстостенный цилиндр (кольцо, обруч)

    Вывод формулы

    Пусть имеется однородное кольцо с внешним радиусом R , внутренним радиусом R 1 , толщиной h и плотностью ρ . Разобьём его на тонкие кольца толщиной dr . Масса и момент инерции тонкого кольца радиуса r составит

    d m = ρ d V = ρ ⋅ 2 π r h d r ; d J = r 2 d m = 2 π ρ h r 3 d r . {\displaystyle dm=\rho dV=\rho \cdot 2\pi rhdr;\qquad dJ=r^{2}dm=2\pi \rho hr^{3}dr.}

    Момент инерции толстого кольца найдём как интеграл

    J = ∫ R 1 R d J = 2 π ρ h ∫ R 1 R r 3 d r = {\displaystyle J=\int _{R_{1}}^{R}dJ=2\pi \rho h\int _{R_{1}}^{R}r^{3}dr=} = 2 π ρ h r 4 4 | R 1 R = 1 2 π ρ h (R 4 − R 1 4) = 1 2 π ρ h (R 2 − R 1 2) (R 2 + R 1 2) . {\displaystyle =2\pi \rho h\left.{\frac {r^{4}}{4}}\right|_{R_{1}}^{R}={\frac {1}{2}}\pi \rho h\left(R^{4}-R_{1}^{4}\right)={\frac {1}{2}}\pi \rho h\left(R^{2}-R_{1}^{2}\right)\left(R^{2}+R_{1}^{2}\right).}

    Поскольку объём и масса кольца равны

    V = π (R 2 − R 1 2) h ; m = ρ V = π ρ (R 2 − R 1 2) h , {\displaystyle V=\pi \left(R^{2}-R_{1}^{2}\right)h;\qquad m=\rho V=\pi \rho \left(R^{2}-R_{1}^{2}\right)h,}

    получаем окончательную формулу для момента инерции кольца

    J = 1 2 m (R 2 + R 1 2) . {\displaystyle J={\frac {1}{2}}m\left(R^{2}+R_{1}^{2}\right).}

    Однородный диск (сплошной цилиндр)

    Вывод формулы

    Рассматривая цилиндр (диск) как кольцо с нулевым внутренним радиусом (R 1 = 0 ), получим формулу для момента инерции цилиндра (диска):

    J = 1 2 m R 2 . {\displaystyle J={\frac {1}{2}}mR^{2}.}

    Сплошной конус

    Вывод формулы

    Разобьём конус на тонкие диски толщиной dh , перпендикулярные оси конуса. Радиус такого диска равен

    r = R h H , {\displaystyle r={\frac {Rh}{H}},}

    где R – радиус основания конуса, H – высота конуса, h – расстояние от вершины конуса до диска. Масса и момент инерции такого диска составят

    d J = 1 2 r 2 d m = 1 2 π ρ r 4 d h = 1 2 π ρ (R h H) 4 d h ; {\displaystyle dJ={\frac {1}{2}}r^{2}dm={\frac {1}{2}}\pi \rho r^{4}dh={\frac {1}{2}}\pi \rho \left({\frac {Rh}{H}}\right)^{4}dh;}

    Интегрируя, получим

    J = ∫ 0 H d J = 1 2 π ρ (R H) 4 ∫ 0 H h 4 d h = 1 2 π ρ (R H) 4 h 5 5 | 0 H == 1 10 π ρ R 4 H = (ρ ⋅ 1 3 π R 2 H) 3 10 R 2 = 3 10 m R 2 . {\displaystyle {\begin{aligned}J=\int _{0}^{H}dJ={\frac {1}{2}}\pi \rho \left({\frac {R}{H}}\right)^{4}\int _{0}^{H}h^{4}dh={\frac {1}{2}}\pi \rho \left({\frac {R}{H}}\right)^{4}\left.{\frac {h^{5}}{5}}\right|_{0}^{H}=={\frac {1}{10}}\pi \rho R^{4}H=\left(\rho \cdot {\frac {1}{3}}\pi R^{2}H\right){\frac {3}{10}}R^{2}={\frac {3}{10}}mR^{2}.\end{aligned}}}

    Сплошной однородный шар

    Вывод формулы

    Разобьём шар на тонкие диски толщиной dh , перпендикулярные оси вращения. Радиус такого диска, расположенного на высоте h от центра сферы, найдём по формуле

    r = R 2 − h 2 . {\displaystyle r={\sqrt {R^{2}-h^{2}}}.}

    Масса и момент инерции такого диска составят

    d m = ρ d V = ρ ⋅ π r 2 d h ; {\displaystyle dm=\rho dV=\rho \cdot \pi r^{2}dh;} d J = 1 2 r 2 d m = 1 2 π ρ r 4 d h = 1 2 π ρ (R 2 − h 2) 2 d h = 1 2 π ρ (R 4 − 2 R 2 h 2 + h 4) d h . {\displaystyle dJ={\frac {1}{2}}r^{2}dm={\frac {1}{2}}\pi \rho r^{4}dh={\frac {1}{2}}\pi \rho \left(R^{2}-h^{2}\right)^{2}dh={\frac {1}{2}}\pi \rho \left(R^{4}-2R^{2}h^{2}+h^{4}\right)dh.}

    Момент инерции шара найдём интегрированием:

    J = ∫ − R R d J = 2 ∫ 0 R d J = π ρ ∫ 0 R (R 4 − 2 R 2 h 2 + h 4) d h = = π ρ (R 4 h − 2 3 R 2 h 3 + 1 5 h 5) | 0 R = π ρ (R 5 − 2 3 R 5 + 1 5 R 5) = 8 15 π ρ R 5 = = (4 3 π R 3 ρ) ⋅ 2 5 R 2 = 2 5 m R 2 . {\displaystyle {\begin{aligned}J&=\int _{-R}^{R}dJ=2\int _{0}^{R}dJ=\pi \rho \int _{0}^{R}\left(R^{4}-2R^{2}h^{2}+h^{4}\right)dh=\\&=\pi \rho \left.\left(R^{4}h-{\frac {2}{3}}R^{2}h^{3}+{\frac {1}{5}}h^{5}\right)\right|_{0}^{R}=\pi \rho \left(R^{5}-{\frac {2}{3}}R^{5}+{\frac {1}{5}}R^{5}\right)={\frac {8}{15}}\pi \rho R^{5}=\\&=\left({\frac {4}{3}}\pi R^{3}\rho \right)\cdot {\frac {2}{5}}R^{2}={\frac {2}{5}}mR^{2}.\end{aligned}}}

    Тонкостенная сфера

    Вывод формулы

    Для вывода воспользуемся формулой момента инерции однородного шара радиуса R :

    J 0 = 2 5 M R 2 = 8 15 π ρ R 5 . {\displaystyle J_{0}={\frac {2}{5}}MR^{2}={\frac {8}{15}}\pi \rho R^{5}.}

    Вычислим, насколько изменится момент инерции шара, если при неизменной плотности ρ его радиус увеличится на бесконечно малую величину dR .

    J = d J 0 d R d R = d d R (8 15 π ρ R 5) d R = = 8 3 π ρ R 4 d R = (ρ ⋅ 4 π R 2 d R) 2 3 R 2 = 2 3 m R 2 . {\displaystyle {\begin{aligned}J&={\frac {dJ_{0}}{dR}}dR={\frac {d}{dR}}\left({\frac {8}{15}}\pi \rho R^{5}\right)dR=\\&={\frac {8}{3}}\pi \rho R^{4}dR=\left(\rho \cdot 4\pi R^{2}dR\right){\frac {2}{3}}R^{2}={\frac {2}{3}}mR^{2}.\end{aligned}}}

    Тонкий стержень (ось проходит через центр)

    Вывод формулы

    Разобьём стержень на малые фрагменты длиной dr . Масса и момент инерции такого фрагмента равна

    d m = m d r l ; d J = r 2 d m = m r 2 d r l . {\displaystyle dm={\frac {mdr}{l}};\qquad dJ=r^{2}dm={\frac {mr^{2}dr}{l}}.}

    Интегрируя, получим

    J = ∫ − l / 2 l / 2 d J = 2 ∫ 0 l / 2 d J = 2 m l ∫ 0 l / 2 r 2 d r = 2 m l r 3 3 | 0 l / 2 = 2 m l l 3 24 = 1 12 m l 2 . {\displaystyle J=\int _{-l/2}^{l/2}dJ=2\int _{0}^{l/2}dJ={\frac {2m}{l}}\int _{0}^{l/2}r^{2}dr={\frac {2m}{l}}\left.{\frac {r^{3}}{3}}\right|_{0}^{l/2}={\frac {2m}{l}}{\frac {l^{3}}{24}}={\frac {1}{12}}ml^{2}.}

    Тонкий стержень (ось проходит через конец)

    Вывод формулы

    При перемещении оси вращения из середины стержня на его конец, центр тяжести стержня перемещается относительно оси на расстояние l ⁄ 2 . По теореме Штейнера новый момент инерции будет равен

    J = J 0 + m r 2 = J 0 + m (l 2) 2 = 1 12 m l 2 + 1 4 m l 2 = 1 3 m l 2 . {\displaystyle J=J_{0}+mr^{2}=J_{0}+m\left({\frac {l}{2}}\right)^{2}={\frac {1}{12}}ml^{2}+{\frac {1}{4}}ml^{2}={\frac {1}{3}}ml^{2}.}

    Безразмерные моменты инерции планет и спутников

    Большое значение для исследований внутренней структуры планет и их спутников имеют их безразмерные моменты инерции. Безразмерный момент инерции тела радиуса r и массы m равен отношению его момента инерции относительно оси вращения к моменту инерции материальной точки той же массы относительно неподвижной оси вращения, расположенной на расстоянии r (равному mr 2 ). Эта величина отражает распределение массы по глубине. Одним из методов её измерения у планет и спутников является определение доплеровского смещения радиосигнала, передаваемого АМС , пролетающей около данной планеты или спутника. Для тонкостенной сферы безразмерный момент инерции равен 2/3 (~0,67), для однородного шара - 0,4, и вообще тем меньше, чем большая масса тела сосредоточена у его центра. Например, у Луны безразмерный момент инерции близок к 0,4 (равен 0,391), поэтому предполагают, что она относительно однородна, её плотность с глубиной меняется мало. Безразмерный момент инерции Земли меньше, чем у однородного шара (равен 0,335), что является аргументом в пользу существования у неё плотного ядра .

    Центробежный момент инерции

    Центробежными моментами инерции тела по отношению к осям прямоугольной декартовой системы координат называются следующие величины :

    J x y = ∫ (m) x y d m = ∫ (V) x y ρ d V , {\displaystyle J_{xy}=\int \limits _{(m)}xydm=\int \limits _{(V)}xy\rho dV,} J x z = ∫ (m) x z d m = ∫ (V) x z ρ d V , {\displaystyle J_{xz}=\int \limits _{(m)}xzdm=\int \limits _{(V)}xz\rho dV,} J y z = ∫ (m) y z d m = ∫ (V) y z ρ d V , {\displaystyle J_{yz}=\int \limits _{(m)}yzdm=\int \limits _{(V)}yz\rho dV,}

    где x , y и z - координаты малого элемента тела объёмом dV , плотностью ρ и массой dm .

    Ось OX называется главной осью инерции тела , если центробежные моменты инерции J xy и J xz одновременно равны нулю. Через каждую точку тела можно провести три главные оси инерции. Эти оси взаимно перпендикулярны друг другу. Моменты инерции тела относительно трёх главных осей инерции, проведённых в произвольной точке O тела, называются главными моментами инерции данного тела .

    Главные оси инерции, проходящие через центр масс тела, называются главными центральными осями инерции тела , а моменты инерции относительно этих осей - его главными центральными моментами инерции . Ось симметрии однородного тела всегда является одной из его главных центральных осей инерции .

    Геометрические моменты инерции

    Геометрический момент инерции объёма

    J V a = ∫ (V) r 2 d V , {\displaystyle J_{Va}=\int \limits _{(V)}r^{2}dV,}

    где, как и ранее r - расстояние от элемента dV до оси a .

    Геометрический момент инерции площади относительно оси - геометрическая характеристика тела, выражаемая формулой :

    J S a = ∫ (S) r 2 d S , {\displaystyle J_{Sa}=\int \limits _{(S)}r^{2}dS,}

    где интегрирование выполняется по поверхности S , а dS - элемент этой поверхности.

    Размерность J Sa - длина в четвёртой степени ( d i m J S a = L 4 {\displaystyle \mathrm {dim} J_{Sa}=\mathrm {L^{4}} } ), соответственно единица измерения СИ - 4 . В строительных расчетах, литературе и сортаментах металлопроката часто указывается в см 4 .

    Через геометрический момент инерции площади выражается момент сопротивления сечения:

    W = J S a r m a x . {\displaystyle W={\frac {J_{Sa}}{r_{max}}}.}

    Здесь r max - максимальное расстояние от поверхности до оси.

    Геометрические моменты инерции площади некоторых фигур
    Прямоугольника высотой h {\displaystyle h} и шириной b {\displaystyle b} : J y = b h 3 12 {\displaystyle J_{y}={\frac {bh^{3}}{12}}}

    J z = h b 3 12 {\displaystyle J_{z}={\frac {hb^{3}}{12}}}

    Прямоугольного коробчатого сечения высотой и шириной по внешним контурам H {\displaystyle H} и B {\displaystyle B} , а по внутренним h {\displaystyle h} и b {\displaystyle b} соответственно J z = B H 3 12 − b h 3 12 = 1 12 (B H 3 − b h 3) {\displaystyle J_{z}={\frac {BH^{3}}{12}}-{\frac {bh^{3}}{12}}={\frac {1}{12}}(BH^{3}-bh^{3})}

    J y = H B 3 12 − h b 3 12 = 1 12 (H B 3 − h b 3) {\displaystyle J_{y}={\frac {HB^{3}}{12}}-{\frac {hb^{3}}{12}}={\frac {1}{12}}(HB^{3}-hb^{3})}

    Круга диаметром d {\displaystyle d} J y = J z = π d 4 64 {\displaystyle J_{y}=J_{z}={\frac {\pi d^{4}}{64}}}

    Момент инерции относительно плоскости

    Моментом инерции твёрдого тела относительно некоторой плоскости называют скалярную величину, равную сумме произведений массы каждой точки тела на квадрат расстояния от этой точки до рассматриваемой плоскости .

    Если через произвольную точку O {\displaystyle O} провести координатные оси x , y , z {\displaystyle x,y,z} , то моменты инерции относительно координатных плоскостей x O y {\displaystyle xOy} , y O z {\displaystyle yOz} и z O x {\displaystyle zOx} будут выражаться формулами:

    J x O y = ∑ i = 1 n m i z i 2 , {\displaystyle J_{xOy}=\sum _{i=1}^{n}m_{i}z_{i}^{2}\ ,} J y O z = ∑ i = 1 n m i x i 2 , {\displaystyle J_{yOz}=\sum _{i=1}^{n}m_{i}x_{i}^{2}\ ,} J z O x = ∑ i = 1 n m i y i 2 . {\displaystyle J_{zOx}=\sum _{i=1}^{n}m_{i}y_{i}^{2}\ .}

    В случае сплошного тела суммирование заменяется интегрированием.

    Центральный момент инерции

    Центральный момент инерции (момент инерции относительно точки O, момент инерции относительно полюса, полярный момент инерции ) J O {\displaystyle J_{O}} - это величина, определяемая выражением :

    J a = ∫ (m) r 2 d m = ∫ (V) ρ r 2 d V , {\displaystyle J_{a}=\int \limits _{(m)}r^{2}dm=\int \limits _{(V)}\rho r^{2}dV,}

    Центральный момент инерции можно выразить через главные осевые моменты инерции, а также через моменты инерции относительно плоскостей :

    J O = 1 2 (J x + J y + J z) , {\displaystyle J_{O}={\frac {1}{2}}\left(J_{x}+J_{y}+J_{z}\right),} J O = J x O y + J y O z + J x O z . {\displaystyle J_{O}=J_{xOy}+J_{yOz}+J_{xOz}.}

    Тензор инерции и эллипсоид инерции

    Момент инерции тела относительно произвольной оси, проходящей через центр масс и имеющей направление, заданное единичным вектором s → = ‖ s x , s y , s z ‖ T , | s → | = 1 {\displaystyle {\vec {s}}=\left\Vert s_{x},s_{y},s_{z}\right\Vert ^{T},\left\vert {\vec {s}}\right\vert =1} , можно представить в виде квадратичной (билинейной) формы :

    I s = s → T ⋅ J ^ ⋅ s → , {\displaystyle I_{s}={\vec {s}}^{T}\cdot {\hat {J}}\cdot {\vec {s}},\qquad } (1)

    где - тензор инерции . Матрица тензора инерции симметрична, имеет размеры 3 × 3 {\displaystyle 3\times 3} и состоит из компонент центробежных моментов:

    J ^ = ‖ J x x − J x y − J x z − J y x J y y − J y z − J z x − J z y J z z ‖ , {\displaystyle {\hat {J}}=\left\Vert {\begin{array}{ccc}J_{xx}&-J_{xy}&-J_{xz}\\-J_{yx}&J_{yy}&-J_{yz}\\-J_{zx}&-J_{zy}&J_{zz}\end{array}}\right\Vert ,} J x y = J y x , J x z = J z x , J z y = J y z , {\displaystyle J_{xy}=J_{yx},\quad J_{xz}=J_{zx},\quad J_{zy}=J_{yz},\quad } J x x = ∫ (m) (y 2 + z 2) d m , J y y = ∫ (m) (x 2 + z 2) d m , J z z = ∫ (m) (x 2 + y 2) d m . {\displaystyle J_{xx}=\int \limits _{(m)}(y^{2}+z^{2})dm,\quad J_{yy}=\int \limits _{(m)}(x^{2}+z^{2})dm,\quad J_{zz}=\int \limits _{(m)}(x^{2}+y^{2})dm.}

    Выбором соответствующей системы координат матрица тензора инерции может быть приведена к диагональному виду. Для этого нужно решить задачу о собственных значениях для матрицы тензора J ^ {\displaystyle {\hat {J}}} :

    J ^ d = Q ^ T ⋅ J ^ ⋅ Q ^ , {\displaystyle {\hat {J}}_{d}={\hat {Q}}^{T}\cdot {\hat {J}}\cdot {\hat {Q}},} J ^ d = ‖ J X 0 0 0 J Y 0 0 0 J Z ‖ , {\displaystyle {\hat {J}}_{d}=\left\Vert {\begin{array}{ccc}J_{X}&0&0\\0&J_{Y}&0\\0&0&J_{Z}\end{array}}\right\Vert ,}

    где Q ^ {\displaystyle {\hat {Q}}} - ортогональная матрица перехода в собственный базис тензора инерции. В собственном базисе координатные оси направлены вдоль главных осей тензора инерции, а также совпадают с главными полуосями эллипсоида тензора инерции. Величины J X , J Y , J Z {\displaystyle J_{X},J_{Y},J_{Z}} - главные моменты инерции. Выражение (1) в собственной системе координат имеет вид:

    I s = J X ⋅ s x 2 + J Y ⋅ s y 2 + J Z ⋅ s z 2 , {\displaystyle I_{s}=J_{X}\cdot s_{x}^{2}+J_{Y}\cdot s_{y}^{2}+J_{Z}\cdot s_{z}^{2},}

    откуда получается уравнение эллипсоида в собственных координатах. Разделив обе части уравнения на I s {\displaystyle I_{s}}

    (s x I s) 2 ⋅ J X + (s y I s) 2 ⋅ J Y + (s z I s) 2 ⋅ J Z = 1 {\displaystyle \left({s_{x} \over {\sqrt {I_{s}}}}\right)^{2}\cdot J_{X}+\left({s_{y} \over {\sqrt {I_{s}}}}\right)^{2}\cdot J_{Y}+\left({s_{z} \over {\sqrt {I_{s}}}}\right)^{2}\cdot J_{Z}=1}

    и произведя замены:

    ξ = s x I s , η = s y I s , ζ = s z I s , {\displaystyle \xi ={s_{x} \over {\sqrt {I_{s}}}},\eta ={s_{y} \over {\sqrt {I_{s}}}},\zeta ={s_{z} \over {\sqrt {I_{s}}}},}

    получаем канонический вид уравнения эллипсоида в координатах ξ η ζ {\displaystyle \xi \eta \zeta } :

    ξ 2 ⋅ J X + η 2 ⋅ J Y + ζ 2 ⋅ J Z = 1. {\displaystyle \xi ^{2}\cdot J_{X}+\eta ^{2}\cdot J_{Y}+\zeta ^{2}\cdot J_{Z}=1.}

    Расстояние от центра эллипсоида до некоторой его точки связано со значением момента инерции тела вдоль прямой, проходящей через центр эллипсоида и эту точку.