Домой / Право / Матрицы. Действия над матрицами. Свойства операций над матрицами. Виды матриц. Основные операции над матрицами и их свойства Матрицы типы матриц действия с матрицами

Матрицы. Действия над матрицами. Свойства операций над матрицами. Виды матриц. Основные операции над матрицами и их свойства Матрицы типы матриц действия с матрицами

Заметим, что элементами матрицы могут быть не только числа. Представим себе, что вы описываете книги, которые стоят на вашей книжной полке. Пусть у вас на полке порядок и все книги стоят на строго определенных местах. Таблица , которая будет содержать описание вашей библиотеки (по полкам и следованию книг на полке), тоже будет матрицей. Но такая матрица будет не числовой. Другой пример. Вместо чисел стоят разные функции, объединенные между собой некоторой зависимостью. Полученная таблица также будет называться матрицей. Иными словами, Матрица , это любая прямоугольная таблица , составленная из однородных элементов. Здесь и далее мы будем говорить о матрицах, составленных из чисел.

Вместо круглых скобок для записи матриц применяют квадратные скобки или прямые двойные вертикальные линии


(2.1*)

Определение 2 . Если в выражении (1) m = n , то говорят о квадратной матрице , а если , то о прямоугольной .

В зависимости от значений m и n различают некоторые специальные виды матриц:

Важнейшей характеристикой квадратной матрицы является ее определитель или детерминант , который составляется из элементов матрицы и обозначается

Очевидно, что D E =1 ; .

Определение 3 . Если , то матрица A называется невырожденной или не особенной .

Определение 4 . Если detA = 0 , то матрица A называется вырожденной или особенной .

Определение 5 . Две матрицы A и B называются равными и пишут A = B , если они имеют одинаковые размеры и их соответствующие элементы равны, т.е .

Например, матрицы и равны, т.к. они равны по размеру и каждый элемент одной матрицы равен соответствующему элементу другой матрицы. А вот матрицы и нельзя назвать равными, хотя детерминанты обеих матриц равны, и размеры матриц одинаковые, но не все элементы, стоящие на одних и тех же местах равны. Матрицы и разные, так как имеют разный размер. Первая матрица имеет размер 2х3, а вторая 3х2. Хотя количество элементов одинаковое – 6 и сами элементы одинаковые 1, 2, 3, 4, 5, 6, но они стоят на разных местах в каждой матрице. А вот матрицы и равны, согласно определению 5.

Определение 6 . Если зафиксировать некоторое количество столбцов матрицы A и такое же количество ee строк, тогда элементы, стоящие на пересечении указанных столбцов и строк образуют квадратную матрицу n - го порядка, определитель которой называется минором k – го порядка матрицы A .

Пример . Выписать три минора второго порядка матрицы

Задачи линейной алгебры. Понятие матрицы. Виды матриц. Операции с матрицами. Решение задач на преобразование матриц.

При решении различных задач математики очень часто приходится иметь дело с таблицами чисел, называемых матрицами. С помощью матриц удобно решать системы линейных уравнений, выполнять многие операции с векторами, решать различные задачи компьютерной графики и другие инженерные задачи.

Матрицей называется прямоугольная таблица из чисел, содержащая некоторое количество m строк и некоторое количество п столбцов. Числа т и п называются порядками матрицы. В случае, если т = п, матрица называется квадратной, а число m = n - ее порядком.

В дальнейшем для записи матриц будут применяться либо сдвоенные черточки, либо круглые скобки:

Или

Для краткого обозначения матрицы часто будет использоваться либо одна большая латинская буква (например, A), либо символ || a ij || , а иногда с разъяснением: А = || a ij || = (a ij), где (i = 1, 2, ..., т, j=1, 2, ..., n).

Числа a ij , входящие в состав данной матрицы, называются ее элементами. В записи a ij первый индекс і означает номер строки, а второй индекс j - номер столбца. В случае квадрат-ной матрицы

(1.1)

вводятся понятия главной и побочной диагоналей. Главной диагональю матрицы (1.1) называется диагональ а 11 а 12 a nn идущая из левого верхнего угла этой матрицы в правый нижний ее угол. Побочной диагональю той же матрицы называ­ется диагональ а n 1 а (n -1)2 a 1 n , идущая из левого нижнего угла в правый верхний угол.

Основные операции над матрицами и их свойства.

Перейдем к определению основных операции над матрицами.

Сложение матриц. Суммой двух матриц A = || a ij || , где и В = || b ij || , где (i = 1, 2, ..., т, j=1, 2, ..., n) одних и тех же порядков т и п называется матрица С = || c ij || (і =1,2, ..., т; j = 1, 2, ...., п) тех же порядков т и п, элементы с ij которой определяются по формуле

, где (i = 1, 2, ..., т, j=1, 2, ..., n) (1.2)

Для обозначения суммы двух матриц используется запись С = А + В. Операция составления суммы матриц называется их сложением. Итак, по определению:

+ =

Из определения суммы матриц, а точнее из формул (1.2) непосредственно вытекает, что операция сложения матриц обладает теми же свойствами, что и операция сложения веществен-ных чисел, а именно:

1) переместительным свойством: А + В = В + А,

2) сочетательным свойством: (A + B) + С = А + (В + С).

Эти свойства позволяют не заботиться о порядке следования слагаемых матриц при сложении двух или большего числа матриц.

Умножение матрицы на число. Произведением матрицы A = || a ij || , где (i = 1, 2, ..., m, j=1, 2, ..., n) на вещественное число l, называется матрица С = || c ij || (і =1,2, ..., m; j = 1, 2, ...., n) , элементы которой определяются по формуле:

, где (i = 1, 2, ..., т, j=1, 2, ..., n) (1.3)

Для обозначения произведения матрицыі на число используется запись С = l A или С = А l. Операция составления произ­ведения матрицы на число называется умножением матрицы на это число.

Непосредственно из формулы (1.3) ясно, что умножение матрицы на число обладает следующими свойствами:

1) сочетательным свойством относительно числового множителя: (l m) A = l (m A);

2) распределительным свойством относительно суммы матриц: l (A + B) = l A + l B;

3) распределительным свойством относительно суммы чисел: (l + m) A = l A + m A

Замечание. Разностью двух матриц А и В одинаковых порядков т и п естественно назвать такую матрицу С тех же порядков т и п, которая в сумме с матрицей B дает матрицу A. Для обозначения разности двух матриц используется естественная запись: С = A - В.

Очень легко убедиться в том, что разность С двух матриц А и В может быть получена по правилу С = A + (–1) В.

Произведение матриц или перемножение матриц.

Произведением матрицы A = || a ij || , где (i = 1, 2, ..., m, j = 1, 2, ..., n) имеющей по­рядки, соответственно равные т и n, на матрицу В = || b ij || , где (i = 1, 2, ..., n , j=1, 2, ..., р), имеющую порядки, соответственно равные n и р, называется матрица С = || c ij || (і =1,2, ..., m; j = 1, 2, ...., р) , имеющая порядки, соответственно равные т и р элементы которой определя-ются по формуле:

где (i = 1, 2, ..., m, j = 1, 2, ..., p) (1.4)

Для обозначения произведения матрицыі А на матрицу В используют запись С = А × В . Операция составления произведения матрицы А на матрицу В называется перемножением этих матриц.

Из сформулированного выше определения вытекает, что матрицу А можно умножить не на всякую матрицу В, необходимо, чтобы число столбцов матрицы А было равно числу строк матрицы В.

Формула (1.4) представляет собой правило составления элементов матрицы С, являющейся произведением матрицы А на матрицу В. Это правило можно сформулировать и словесно: элемент c i j стоящий на пвресечении і-й строки и j-го столбца матрицьі С = А В, равен сумме попарных произведений соответствующих элементов і-й строки матрицы А и j-го столбца матрицы В.

В качестве примера применения указанного правила приведем формулу перемножения квадратных матриц второго порядка.

× =

Из формулы (1.4) вытекают следующие свойства произведения матрицы А на матри-цу В:

1) сочетательное свойство: (А В) С = А (В С);

2) распределительное относительно суммы матриц свойство:

(A + B) С = А С + В С или A (В + С) = A В + А С.

Вопрос о перестановочном (переместительном) свойстве произведения матрицы A на матрицу В имеет смысл ставить лишь для квадратных матриц A и В одинакового порядка.

Приведем важные частные случаи матриц, для которых справедливо и переста-новочное свойство. Две матрицы для произведения которых справедливо перестановочное свойство, принято називать коммутирующими.

Среди квадратных матриц выделим класс так называемых диагональных матриц, у каждой из которых элементы, расположенные вне главной диагонали, равны нулю. Каждая диа-гональная матрица порядка п имеет вид

D = (1.5)

где d 1 , d 2 , , d n -какие угодно числа. Легко видеть, что если все эти числа равны между собой, т. е. d 1 = d 2 = … = d n то для любой квадратной матрицы А порядка п справедливо равенство А D = D А.

Среди всех диагональных матриц (1.5) с совпадающими элементами d 1 = d 2 = … = d n = = d особо важную роль играют две матрицы. Первая из этих матриц получается при d = 1, называется единичной матрицей n Е. Вторая матрица получается при d = 0 , называется нулевой матрицей n -го порядка и обозначается символом O. Таким образом,

E = O =

В силу доказанного выше А Е = Е А и А О = О А. Более того, легко показать, что

А Е = Е А = А, А О = О А = 0. (1.6)

Первая из формул (1.6) характеризует особую роль единичной матрицы Е, аналогичную той роли, которую играет число 1 при перемножений вещественных чисел. Что же касается особой роли нулевой матрицы О, то ее выявляет не только вторая из формул (1.7), но и элементарно проверяемое равенство

А + 0 = 0 + А = А.

В заключение заметим, что понятие нулевой матрицы можно вводить и для неквадрат-ных матриц (нулевой называют любую матрицу, все элементы которой равныї нулю).

Блочные матрицы

Предположим, что некоторая матрица A = || a ij || при помощи горизонтальных и вертикальных прямых разбита на отдельные прямоугольные клетки, каждая из которых представляет собой матрицу меньших размеров и называется блоком исходной матрицы. В таком случае возникает возможность рассмотрения исходной матрицы А как некоторой новой (так называемой б л о ч н о й) матрицыі А = || A a b || , элементами которой служат указанные блоки. Указанные элементы мы обозначаем большой латинской буквой, чтобы подчеркнуть, что они являются, вообще говоря, матрицами, а не числами и (как обычные числовые элементы) снабжаем двумя индексами, первый из которых указывает номер «блочной» строки, а второй - номер «блочного» столбца.

Например, матрицу

можно рассматривать как блочную матрицу

элементами которой служат следующие блоки:

Замечательным является тот факт, что основные операции с блочными матрицами совершаются по тем же правилам, по которым они совершаются с обычными числовыми матрицами, только в роли элементов выступают блоки.

Понятие определителя.

Рассмотрим произвольную квадрат­ную матрицу любого порядка п:

A = (1.7)

С каждой такой матрицей свяжем вполне определенную числен­ную характеристику, называемую определителем, соответствующим этой матрице.

Если порядок n матрицы (1.7) равен единице, то эта матрица состоит из одного элемен-та а i j определителем первого порядка соответствующим такой матрице, мы назовем величину этого элемента.

то определителем второго порядка, соответствующим такой мат­рице, назовем число, равное а 11 а 22 - а 12 а 21 и обозначаемое одним из символов:

Итак, по определению

(1.9)

Формула (1.9) представляет собой правило составления определителя второго порядка по элементам соответствующей ему матрицы. Словесная формулировка этого правила такова: определитель второго порядка, соответствующий матрице (1.8), равен разности произведения элементов, стоящих на главной диагонали этой матрицы, и произведения элементов, стоящих на побочной ее диагонали. Определители второго и более высоких порядков находят широкое применение при решении систем линейных уравнений.

Рассмотрим, как выполняются операции с матрицами в системе MathCad . Простейшие операции матричной алгебры реализованы в MathCad в виде операторов. Написание операторов по смыслу максимально приближено к их математическому действию. Каждый оператор выражается соответствующим символом. Рассмотрим матричные и векторные операции MathCad 2001. Векторы являются частным случаем матриц размерности n x 1, поэтому для них справедливы все те операции, что и для матриц, если ограничения осо­бо не оговорены (например, некоторые операции применимы только к квадратным матрицам n x n ). Какие-то действия допустимы только для векторов (например, скалярное произведение), а какие-то, несмотря на одинако­вое написание, по-разному действуют на векторы и матрицы.


В появившемся диалоге задайте число строк и столбцов матрицы.

q После нажатия кнопки OK открывается поле для ввода элементов матрицы. Для того, чтобы ввести элемент матрицы, установите курсор в отмеченной позиции и введите с клавиатуры число или выражение.

Для того, чтобы выполнить какую-либо операцию с помощью панели инструментов, нужно:

q выделить матрицу и щелкнуть в панели по кнопке операции,

q или щелкнуть по кнопке в панели и ввести в помеченной позиции имя матрицы.

Меню “Символы” содержит три операции - транспонирование, инвертирование, определитель .

Это означает, например, что вычислить определитель матрицы можно, выполнив команду Символы/Матрицы/Определитель .

Номер первой строки (и первого столбца) матрицы MathCAD хранит в переменной ORIGIN. По умолчанию отсчет ведется от нуля. В математической записи чаще принято вести отсчет от 1. Для того, чтобы MathCAD вел отсчет номеров строк и столбцов от 1, нужно задать значение переменной ORIGIN:=1.

Функции, предназначенные для работы с задачами линейной алгебры, собраны в разделе “Векторы и матрицы” диалога “вставить функцию” (напоминаем, что он вызывается кнопкой на панели “Стандартные”). Основные из этих функций будут описаны позже.

Транспонирование

Рис.2 Транспонирование матриц

В MathCAD можно как складывать матрицы, так и вычитать их друг из друга. Для этих операторов применяются символы <+> или <-> соответст­венно. Матрицы должны иметь одинаковую размерность, иначе будет выда­но сообщение об ошибке. Каждый элемент суммы двух матриц равен сумме соответствующих элементов матриц-слагаемых (пример на рис.3).
Кроме сложения матриц, MathCAD поддерживает операцию сложения матрицы со скалярной величиной, т.е. числом (пример на рис.4). Каждый элемент результирующей матрицы равен сумме соответст-вующего элемента исходной матрицы и скалярной величины.
Чтобы ввести символ умножения, нужно нажать клавишу со звездочкой <*> или воспользоваться панелью инструментовMatrix (Матрица), нажав на ней кнопку Dot Product (Умножение) (рис.1). Умножение матриц обозначается по умолчанию точкой, как показано в примере на рис 6. Символ умножения матриц можно выбирать точно так же, как и в скалярных выражениях.
Еще один пример, относящийся к умножению вектора на матрицу-строку и, наоборот, строки на вектор, приведен на рис. 7. Во второй строке этого примера показано, как выглядит формула при выборе отображения оператора умноженияNo Space (Вместе). Однако тот же самый оператор умножения действует на два вектора по-другому.

Похожая информация.


Назначение сервиса . Матричный калькулятор предназначен для решения матричных выражений, например, таких как, 3A-CB 2 или A -1 +B T .

Инструкция . Для онлайн решения необходимо задать матричное выражение. На втором этапе необходимо будет уточнить размерность матриц. Допустимые операции: умножение (*), сложение (+), вычитание (-), обратная матрица A^(-1) , возведение в степень (A^2 , B^3), транспонирование матрицы (A^T).

Допустимые операции: умножение (*), сложение (+), вычитание (-), обратная матрица A^(-1) , возведение в степень (A^2 , B^3), транспонирование матрицы (A^T).
Для выполнения списка операций используйте разделитель точка с запятой (;). Например, для выполнения трех операций:
а) 3А+4В
б) АВ-ВА
в) (А-В) -1
необходимо будет записать так: 3*A+4*B;A*B-B*A;(A-B)^(-1)

Матрица - прямоугольная числовая таблица, имеющая m строк и n столбцов, поэтому схематически матрицу можно изображать в виде прямоугольника.
Нулевой матрицей (нуль-матрицей) называют матрицу, все элементы которой равны нулю и обозначают 0.
Единичной матрицей называется квадратная матрица вида


Две матрицы A и B равны , если они одинакового размера и их соответствующие элементы равны.
Вырожденной матрицей называется матрица, определитель которой равен нулю (Δ = 0).

Определим основные операции над матрицами .

Сложение матриц

Определение . Суммой двух матриц A=||a i k || и B=||b i k || одинакового размера называется матрица C=||c i k || тех же размеров, элементы которой находятся по формуле c i k =a i k +b i k . Обозначается C=A+B .

Пример 6 . .
Операция сложения матриц распространяется на случай любого числа слагаемых. Очевидно, что A+0=A .
Еще раз подчеркнем, что складывать можно только матрицы одинакового размера; для матриц разных размеров операция сложения не определена.

Вычитание матриц

Определение . Разностью B-A матриц B и A одинакового размера называется такая матрица C , что A+C=B .

Умножение матриц

Определение . Произведением матрицы A=||a i k || на число α называется матрица C=||c i k ||, получающаяся из A умножением всех ее элементов на α , c i k =α·a i k .

Определение . Пусть даны две матрицы A=||a i k || (i=1,2,...,m; k=1,2,...,n) и B=||b i k || (k=1,2,...,n; j=1,2,...,p), причем число столбцов A равно числу строк B . Произведением A на B называется матрица C=||c i k ||, элементы которой находятся по формуле .
Обозначается C=A·B .
Схематически операцию умножения матриц можно изобразить так:

а правило вычисления элемента в произведении:

Подчеркнем еще раз, что произведение A·B имеет смысл тогда и только тогда, когда число столбцов первого сомножителя равно числу строк второго, при этом в произведении получается матрица, число строк которой равно числу строк первого сомножителя, а число столбцов равно числу столбцов второго. Проверить результат умножения можно через специальный онлайн-калькулятор .

Пример 7 . Даны матрицы и . Найти матрицы C = A·B и D = B·A.
Решение. Прежде всего заметим, что произведение A·B существует, так как число столбцов A равно числу строк B.


Заметим, что в общем случае A·B≠B·A , т.е. произведение матриц антикоммутативно.
Найдем B·A (умножение возможно).

Пример 8 . Дана матрица . Найти 3A 2 – 2A.
Решение.

.
; .
.
Отметим следующий любопытный факт.
Как известно, произведение двух отличных от нуля чисел не равно нулю. Для матриц подобное обстоятельство может и не иметь места, то есть произведение ненулевых матриц может оказаться равным нуль-матрице.


Данное методическое пособие поможет Вам научиться выполнять действия с матрицами : сложение (вычитание) матриц, транспонирование матрицы, умножение матриц, нахождение обратной матрицы. Весь материал изложен в простой и доступной форме, приведены соответствующие примеры, таким образом, даже неподготовленный человек сможет научиться выполнять действия с матрицами. Для самоконтроля и самопроверки Вы можете бесплатно скачать матричный калькулятор >>> .

Я буду стараться минимизировать теоретические выкладки, кое-где возможны объяснения «на пальцах» и использование ненаучных терминов. Любители основательной теории, пожалуйста, не занимайтесь критикой, наша задача – научиться выполнять действия с матрицами .

Для СВЕРХБЫСТРОЙ подготовки по теме (у кого «горит») есть интенсивный pdf-курс Матрица, определитель и зачёт!

Матрица – это прямоугольная таблица каких-либо элементов . В качестве элементов мы будем рассматривать числа, то есть числовые матрицы. ЭЛЕМЕНТ – это термин. Термин желательно запомнить, он будет часто встречаться, не случайно я использовал для его выделения жирный шрифт.

Обозначение: матрицы обычно обозначают прописными латинскими буквами

Пример: рассмотрим матрицу «два на три»:

Данная матрица состоит из шести элементов :

Все числа (элементы) внутри матрицы существуют сами по себе, то есть ни о каком вычитании речи не идет:

Это просто таблица (набор) чисел!

Также договоримся не переставлять числа, если иного не сказано в объяснениях. У каждого числа свое местоположение, и перетасовывать их нельзя!

Рассматриваемая матрица имеет две строки:

и три столбца:

СТАНДАРТ : когда говорят о размерах матрицы, то сначала указывают количество строк, а только потом – количество столбцов. Мы только что разобрали по косточкам матрицу «два на три».

Если количество строк и столбцов матрицы совпадает, то матрицу называют квадратной , например: – матрица «три на три».

Если в матрице один столбец или одна строка , то такие матрицы также называют векторами .

На самом деле понятие матрицы мы знаем еще со школы, рассмотрим, например точку с координатами «икс» и «игрек»: . По существу, координаты точки записаны в матрицу «один на два». Кстати, вот Вам и пример, почему порядок чисел имеет значение: и – это две совершенно разные точки плоскости.

Теперь переходим непосредственно к изучению действий с матрицами :

1) Действие первое. Вынесение минуса из матрицы (внесение минуса в матрицу) .

Вернемся к нашей матрице . Как вы наверняка заметили, в данной матрице слишком много отрицательных чисел. Это очень неудобно с точки зрения выполнения различных действий с матрицей, неудобно писать столько минусов, да и просто в оформлении некрасиво выглядит.

Вынесем минус за пределы матрицы, сменив у КАЖДОГО элемента матрицы знак :

У нуля, как Вы понимаете, знак не меняется, ноль – он и в Африке ноль.

Обратный пример: . Выглядит безобразно.

Внесем минус в матрицу, сменив у КАЖДОГО элемента матрицы знак :

Ну вот, гораздо симпатичнее получилось. И, самое главное, выполнять какие-либо действия с матрицей будет ПРОЩЕ. Потому что есть такая математическая народная примета: чем больше минусов – тем больше путаницы и ошибок .

2) Действие второе. Умножение матрицы на число .

Пример:

Всё просто, для того чтобы умножить матрицу на число, нужно каждый элемент матрицы умножить на данное число. В данном случае – на тройку.

Еще один полезный пример:

– умножение матрицы на дробь

Сначала рассмотрим то, чего делать НЕ НАДО :

Вносить дробь в матрицу НЕ НУЖНО, во-первых, это только затрудняет дальнейшие действия с матрицей, во-вторых, затрудняет проверку решения преподавателем (особенно, если – окончательный ответ задания).

И, тем более, НЕ НАДО делить каждый элемент матрицы на минус семь:

Из статьи Математика для чайников или с чего начать , мы помним, что десятичных дробей с запятой в высшей математике стараются всячески избегать.

Единственное, что желательно сделать в этом примере – это внести минус в матрицу:

А вот если бы ВСЕ элементы матрицы делились на 7 без остатка , то тогда можно (и нужно!) было бы поделить.

Пример:

В этом случае можно и НУЖНО умножить все элементы матрицы на , так как все числа матрицы делятся на 2 без остатка .

Примечание: в теории высшей математики школьного понятия «деление» нет. Вместо фразы «это поделить на это» всегда можно сказать «это умножить на дробь». То есть, деление – это частный случай умножения.

3) Действие третье. Транспонирование матрицы .

Для того чтобы транспонировать матрицу, нужно ее строки записать в столбцы транспонированной матрицы.

Пример:

Транспонировать матрицу

Строка здесь всего одна и, согласно правилу, её нужно записать в столбец:

– транспонированная матрица.

Транспонированная матрица обычно обозначается надстрочным индексом или штрихом справа вверху.

Пошаговый пример:

Транспонировать матрицу

Сначала переписываем первую строку в первый столбец:

Потом переписываем вторую строку во второй столбец:

И, наконец, переписываем третью строку в третий столбец:

Готово. Грубо говоря, транспонировать – это значит повернуть матрицу набок.

4) Действие четвертое. Сумма (разность) матриц .

Сумма матриц действие несложное.
НЕ ВСЕ МАТРИЦЫ МОЖНО СКЛАДЫВАТЬ. Для выполнения сложения (вычитания) матриц, необходимо, чтобы они были ОДИНАКОВЫМИ ПО РАЗМЕРУ.

Например, если дана матрица «два на два», то ее можно складывать только с матрицей «два на два» и никакой другой!

Пример:

Сложить матрицы и

Для того чтобы сложить матрицы, необходимо сложить их соответствующие элементы :

Для разности матриц правило аналогичное, необходимо найти разность соответствующих элементов .

Пример:

Найти разность матриц ,

А как решить данный пример проще, чтобы не запутаться? Целесообразно избавиться от лишних минусов, для этого внесем минус в матрицу :

Примечание: в теории высшей математики школьного понятия «вычитание» нет. Вместо фразы «из этого вычесть это» всегда можно сказать «к этому прибавить отрицательное число». То есть, вычитание – это частный случай сложения.

5) Действие пятое. Умножение матриц .

Какие матрицы можно умножать?

Чтобы матрицу можно было умножить на матрицу нужно, чтобы число столбцов матрицы равнялось числу строк матрицы .

Пример:
Можно ли умножить матрицу на матрицу ?

Значит, умножать данные матрицы можно.

А вот если матрицы переставить местами, то, в данном случае, умножение уже невозможно!

Следовательно, выполнить умножение невозможно:

Не так уж редко встречаются задания с подвохом, когда студенту предлагается умножить матрицы, умножение которых заведомо невозможно.

Следует отметить, что в ряде случаев можно умножать матрицы и так, и так.
Например, для матриц, и возможно как умножение , так и умножение

1-й курс, высшая математика, изучаем матрицы и основные действия над ними. Здесь мы систематизируем основные операции, которые можно проводить с матрицами. С чего начать знакомство с матрицами? Конечно, с самого простого - определений, основных понятий и простейших операций. Заверяем, матрицы поймут все, кто уделит им хотя бы немного времени!

Определение матрицы

Матрица – это прямоугольная таблица элементов. Ну а если простым языком – таблица чисел.

Обычно матрицы обозначаются прописными латинскими буквами. Например, матрица A , матрица B и так далее. Матрицы могут быть разного размера: прямоугольные, квадратные, также есть матрицы-строки и матрицы-столбцы, называемые векторами. Размер матрицы определяется количеством строк и столбцов. Например, запишем прямоугольную матрицу размера m на n , где m – количество строк, а n – количество столбцов.

Элементы, для которых i=j (a11, a22, .. ) образуют главную диагональ матрицы, и называются диагональными.

Что можно делать с матрицами? Складывать/вычитать , умножать на число , умножать между собой , транспонировать . Теперь обо всех этих основных операциях над матрицами по порядку.

Операции сложения и вычитания матриц

Сразу предупредим, что можно складывать только матрицы одинакового размера. В результате получится матрица того же размера. Складывать (или вычитать) матрицы просто – достаточно только сложить их соответствующие элементы . Приведем пример. Выполним сложение двух матриц A и В размером два на два.

Вычитание выполняется по аналогии, только с противоположным знаком.

На произвольное число можно умножить любую матрицу. Чтобы сделать это, нужно умножить на это число каждый ее элемент. Например, умножим матрицу A из первого примера на число 5:

Операция умножения матриц

Перемножить между собой удастся не все матрицы. Например, у нас есть две матрицы - A и B. Их можно умножить друг на друга только в том случае, если число столбцов матрицы А равно числу строк матрицы В. При этом каждый элемент получившейся матрицы, стоящий в i-ой строке и j-м столбце, будет равен сумме произведений соответствующих элементов в i-й строке первого множителя и j-м столбце второго . Чтобы понять этот алгоритм, запишем, как умножаются две квадратные матрицы:

И пример с реальными числами. Умножим матрицы:

Операция транспонирования матрицы

Транспонирование матрицы – это операция, когда соответствующие строки и столбцы меняются местами. Например, транспонируем матрицу A из первого примера:

Определитель матрицы

Определитель, о же детерминант – одно из основных понятий линейной алгебры. Когда-то люди придумали линейные уравнения, а за ними пришлось выдумать и определитель. В итоге, разбираться со всем этим предстоит вам, так что, последний рывок!

Определитель – это численная характеристика квадратной матрицы, которая нужна для решения многих задач.
Чтобы посчитать определитель самой простой квадратной матрицы, нужно вычислить разность произведений элементов главной и побочной диагоналей.

Определитель матрицы первого порядка, то есть состоящей из одного элемента, равен этому элементу.

А если матрица три на три? Тут уже посложнее, но справиться можно.

Для такой матрицы значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.

К счастью, вычислять определители матриц больших размеров на практике приходится редко.

Здесь мы рассмотрели основные операции над матрицами. Конечно, в реальной жизни можно ни разу так и не встретить даже намека на матричную систему уравнений или же наоборот - столкнуться с гораздо более сложными случаями, когда придется действительно поломать голову. Именно для таких случаев и существует профессиональный студенческий сервис . Обращайтесь за помощью, получайте качественное и подробное решение, наслаждайтесь успехами в учебе и свободным временем.