Домой / Английский / Комбинаторика комбинации без повторений. Методы решения комбинаторных задач. Разбиение множества на группы

Комбинаторика комбинации без повторений. Методы решения комбинаторных задач. Разбиение множества на группы

План:

1. Элементы комбинаторики.

2. Общие правила комбинаторики.

4. Применение графов (схем) при решении комбинаторных задач.

1. Комбинаторика и ее возникновение.

Комбинаторика - это область математики, в которой изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из элементов, принадлежащих данному множеству.

Комбинаторика возникла в XVI веке. В жизни привилегированных слоев тогдашнего общества большое место занимали азартные игры (карты, кости). Широко были распространены лотереи. Первоначально комбинаторные задачи касались в основном азартных игр: сколькими способами можно получить данное число очков, бросая 2 или 3 кости или сколькими способами можно получить 2-ух королей в некоторой карточной игре. Эти и другие проблемы азартных игр являлись движущей силой в развитии комбинаторики и далее в развитии теории вероятностей.

Одним из первых занялся подсчетом числа различных комбинаций при игре в кости итальянский математик Тарталья. Он составил таблицы (числа способов выпадения k очков на r костях). Однако, он не учел, одна и та же сумма очков может выпасть различными способами, поэтому его таблицы содержали большое количество ошибок.

Теоретическое исследование вопросов комбинаторики предприняли в XVII веке французские математики Блез Паскаль и Ферма. Исходным пунктом их исследований были так же проблемы азартных игр.

Дальнейшее развитие комбинаторики связано с именами Я. Бернулли, Г. Лейбница, Л. Эйлера. Однако, и в их работах основную роль играли приложения к различным играм.

Сегодня комбинаторные методы используются для решения транспортных задач, в частности задач по составлению расписаний, для составления планов производства и реализации продукции и т.д.

2. Общие правила комбинаторики.

Правило суммы: Если некоторый объект А может быть выбран m способами, а объект В- k способами, то объект «либо А, либо В» можно выбрать m +k способами.

Примеры:

1. Допустим, что в ящике находится n разноцветных шаров. Произвольным образом вынимается 1 шарик. Сколькими способами это можно сделать?

Ответ: n способами.

Распределим эти n шариков по двум ящикам: в первый- m шариков, во второй- k шариков. Произвольным образом из произвольно выбранного ящика вынимается 1 шарик. Сколькими способами это можно сделать?

Решение: Из первого ящика шарик можно вынуть m способами, из второго- k способами. Тогда всего способов m+k=n .

2. Морской семафор.

В морском семафоре каждой букве алфавита соответствует определенное положение относительно тела сигнальщика двух флажков. Сколько таких сигналов может быть?

Решение: Общее число складывается из положений, когда оба флажка расположены по разные стороны от тела сигнальщика и положений, когда они расположены по одну сторону от тела сигнальщика. При подсчете числа возможных положений применяется правило суммы.

Правило произведения: Если объект А можно выбрать m способами, а после каждого такого выбора другой объект В можно выбрать (независимо от выбора объекта А) k способами, то пары объектов «А и В» можно выбрать m *k способами.

Примеры:

1. Сколько двузначных чисел существует?

Решение: Число десятков может быть обозначено любой цифрой от 1 до 9. Число единиц может быть обозначено любой цифрой от 0 до 9. Если число десятков равно 1, то число единиц может быть любым (от 0 до 9). Таким образом, существует 10 двузначных чисел, с числом десятков- 1.Аналогично рассуждаем и для любого другого числа десятков. Тогда можно посчитать, что существует 9 *10 = 90 двузначных чисел.

2. Имеется 2 ящика. В одном лежит m разноцветных кубиков, а в другом- k разноцветных шариков. Сколькими способами можно выбрать пару «Кубик-шарик»?

Решение: Выбор шарика не зависит от выбора кубика, и наоборот. Поэтому, число способов, которыми можно выбрать данную пару равно m *k .

3. Генеральная совокупность без повторений и выборки без повторений.

Генеральная совокупность без повторений - это набор некоторого конечного числа различных элементов a 1 , a 2 , a 3 , ..., a n .

Пример: Набор из n разноцветных лоскутков.

Выборкой объема k (k n ) называется группа из m элементов данной генеральной совокупности.

Пример: Пестрая лента, сшитая из m разноцветных лоскутков, выбранных из данных n .

Размещениями из n элементов по k называются такие выборки, которые содержат по k элементов, выбранных из числа данных n элементов генеральной совокупности без повторений, и отличаются друг от друга либо составом элементов, либо порядком их расположения.

- число размещений из n по k .

Число размещений из n по k можно определить следующим способом: первый объект выборки можно выбрать n способами, далее второй объект можно выбрать n -1 способом и т.д.


Преобразовав данную формулу, имеем:

Следует помнить, что 0!=1.

Примеры:

1. В первой группе класса А первенства по футболу участвует 17 команд. Разыгрываются медали: золото, серебро и бронза. Сколькими способами они могут быть разыграны?

Решение: Комбинации команд-победителей отличаются друг от друга составом и порядком следования элементов, т.е. являются размещениями из 17 по 3.

2. Научное общество состоит из 25-ти человек. Необходимо выбрать президента общества, вице-президента, ученого секретаря и казначея. Сколькими способами это можно сделать?

Решение: Комбинации руководящего состава общества отличаются друг от друга составом и порядком следования элементов, т.е. являются размещениями из 25 по 4.

Перестановками без повторений из n элементов называются размещения без повторений из n элементов по n , т.е. размещения отличаются друг от друга только порядком следования элементов.

Число перестановок.

Примеры:

1. Сколько различных пятизначных чисел можно составить из цифр 1, 2, 3, 4, 5 при условии, что они должны состоять из различных цифр?

Решение: Имеем перестановки из 5 элементов. 2. Сколькими способами можно собрать 6 разноцветных лоскутков в пеструю ленту?
Решение:
Имеем перестановки из 6 элементов.

Сочетаниями без повторений из n элементов по k называются такие выборки, которые содержат по k элементов, выбранных из числа данных n элементов генеральной совокупности без повторений, и отличаются друг от друга только составом элементов.

- число сочетаний из n по k

Элементы каждого из сочетаний можно расставить способами. Тогда Примеры:

1. Если в полуфинале первенства по шахматам участвует 20 человек, а в финал выходят лишь трое, то сколькими способам и можно определить эту тройку?

Решение: В данном случае порядок, в котором располагается эта тройка, не существенен. Поэтому тройки, вышедшие в финал, являются сочетаниями из 20 по 3.

2. Сколькими способами можно выбрать трех делегатов из десяти человек на конференцию?

Решение: В данном случае порядок, в котором располагается эта тройка, не существенен. Поэтому тройки делегатов являются сочетаниями из 10 по 3.

Конспект:




4.Применение графов (схем) при решении комбинаторных задач.

В случае, когда число возможных выборов на каждом шагу зависит от того, какие элементы были выбраны ранее, можно изобразить процесс составления комбинаций в виде «дерева». Сначала из одной точки проводят столько отрезков, сколько различных выборов можно сделать на первом шагу. Из конца каждого отрезка проводят столько отрезков, сколько можно сделать выборов на втором шагу, если на первом шагу был выбран данный элемент и т.д.

Задача:

При составлении команд космического корабля учитывается вопрос и психологической совместимости участников путешествия. Необходимо составить команду космического корабля из 3 человек: командира, инженера и врача. На место командира есть 4 кандидата: a 1 , a 2 , a 3 , a 4 .На место инженера- 3: b 1 , b 2 , b 3 . На место врача- 3: c 1 , c 2 , c 3 . Проведенная проверка показала, что командир a 1 психологически совместим с инженерами b 1 и b 3 и врачами c 1 и c 3 . Командир a 2 - с инженерами b 1 и b 2 . и всеми врачами. Командир a 3 - с инженерами b 1 и b 2 и врачами c 1 и c 3 . Командир a 4 -со всеми инженерами и врачом c 2 . Кроме того, инженер b 1 не совместим с врачом c 3 , b 2 - с врачом c 1 и b 3 - с врачом c 2 . Сколькими способами при этих условиях может быть составлена команда корабля?

Решение:

Составим соответствующее «дерево».






Ответ: 10 комбинаций.

Такое дерево является графом и применяется для решения комбинаторных задач.

Класс: 5

В данной статье рассмотрим один из уроков в курсе математики 5 класса, посвященного знакомству с комбинаторикой.

Цели урока.

Образовательные :

Познакомить учащихся с новым типом задач (комбинаторные задачи), приемами их решения – перебор возможных вариантов, построение дерева возможных вариантов, применение правила умножения;

Ввести новое понятие – факториал, закрепить его при решении задач, примеров, уравнений.

Воспитательные :

Формирование уважения к товарищам, умения слушать и слышать собеседника

Формирование отношения к дружбе как одной из важнейших человеческих ценностей.

Развивающие :

Формирование интереса к предмету;

Формирование вычислительных навыков;

Развитие логического мышления;

Формирование умения доказывать, обосновывать свое мнение.

Ход урока

1. Организационный момент

Учитель: Сегодня у нас с вами необычный урок. Мы будем решать задачи, связанные с одним из интереснейших разделов математики – комбинаторикой. В науке и в реальной жизни очень часто приходится решать задачи, главным вопросом которых является вопрос “Сколькими способами это можно сделать?”. Например:

Сколькими способами можно поставить ученику оценку на уроке?

Сколькими способами можно назначить дежурного в классе?

Сколькими способами можно назначить двух дежурных в классе?

Решая такие задачи, приходится составлять различные комбинации из конечного числа элементов и подсчитывать число комбинаций. Такие задачи получили название комбинаторных задач, а раздел математики, в котором рассматриваются подобные задачи, называют комбинаторикой. А какой еще теме будет посвящен урок, вы узнаете, когда мы проверим, как вы справились с выполнением домашнего задания.

2. Проверка выполнения домашнего задания

(На предыдущем уроке домашнее задание составляется таким образом, чтобы заданий было ровно 6. Например, в учебнике Виленкина Н.Я. и др. это могут быть № 693(а, в), 735(1), 765(а,б,в))

На доске – таблица и закрепленные магнитами карточки. На карточках с одной стороны – ответ к заданию из домашней работы, с другой стороны – буква.

Учитель: Проверим домашнюю работу. Откройте тетради, возьмите карандаши. Найдите ответы к номерам домашней работы.

Учащиеся выходят к доске по одному, выбирают карточку с ответом и прикрепляют ее в ячейку таблицы под номером задания. Сначала карточки закрепляют в клетках таблицы вверх стороной, на которой записан ответ, чтобы учащиеся могли проверить правильность выполнения домашней работы. Остальные проверяют свои ответы в тетрадях.

№ упражнений 693(а) 693(в) 735(1) 765(а) 765(б) 765(в)
Ответы 25 13 6 182 000 6 300 65 000

Варианты ответов (располагаются на разных сторонах карточек). Карточек делают заведомо избыточное количество, чтобы часть ответов была неверной.

д р у ж б а м п о
25 13 6 182 000 6 300 65 000 49 12 18 200

“5” - если все верно

“4” - если одна ошибка

“3” - 2-3 ошибки

“2” - больше 3 ошибок

Учитель: Перевернем карточки, какое слово получили? (ДРУЖБА). Действительно, сегодня на уроке мы будем не только решать математические задачи, совершенствовать навыки вычислений, но и говорить о дружбе.

3. Новый материал.

Учитель: Итак, мы уже сказали, что будем сегодня учиться решать задачи, главным вопросом которых является вопрос “Сколькими способами..”.

Имеются три слова “ДРУЖБА”, “ДЕЛО”, “ЛЮБИТ” (нарезать листочки с этими словами – по 7 карточек на каждое слово). Сколькими способами из этих слов можно составить фразу?

Учащиеся предлагают варианты, эти варианты составляют на доске.

Ответ: 6 способов.

Учитель: Как вы думаете, какой вариант является верным с точки зрения русского языка? (Дружба любит дело). Как вы понимаете это высказывание?

Учитель: Здесь был приведен полный перебор всех возможных вариантов, или, как обычно говорят, всех возможных комбинаций. Поэтому это комбинаторная задача. Давайте подумаем, как можно записать, оформить решение этой задачи.

1 способ. Обозначим предложенные слова заглавными буквами:

ДРУЖБА – Д

ЛЮБИТ – Л

ДЕЛО – Е (возьмем вторую букву этого слова)

Тогда все названные вами способы можно просто перечислить: ДЛЕ, ДЕЛ, ЛДЕ, ЛЕД, ЕДЛ, ЕЛД.

Оказывается, решение можно оформить в виде модели, которую называют деревом возможных вариантов. Она, во-первых, наглядна, как всякая картинка, и, во-вторых, позволяет все учесть, ничего не пропустив,

Учащиеся под руководством учителя составляют схему:

Способ 3 (рассуждение)

На первом месте может стоять одно из трех слов: ДРУЖБА, ЛЮБИТ, ДЕЛО. Если первое слово выбрано, то на втором месте может стоять одно из двух оставшихся слов, а на третьем месте – только одно оставшееся слово. Значит, всего вариантов: .

Заметим, что последний прием называется правилом умножения.

У каждого из этих трех способов есть свои преимущества и свои недостатки (обсудить) Выбор решения – за вами! Отметим все же, что правило умножения позволяет в один шаг решать самые разнообразные задачи.

У Ани 3 подруги, и она каждой из них купила по шоколадке и хочет подарить их к празднику. Сколькими способами она может это сделать?

Решение: Решение выполняют на доске ученики (решение выполняется 3 способами)

В компании друзей – 6 человек: Андрей, Борис, Витя, Гриша, Дима, Егор. В школьной столовой за столом 6 стульев. Друзья решили каждый день, завтракая, рассаживаться на эти 6 стульев по-разному. Сколько раз они смогут это сделать без повторений?

Учитель: Какой способ мы выберем? (Учащиеся под руководством учителя должны придти к выводу, что это третий способ – правило умножения).

Решение оформляет на доске ученик.

Для удобства рассуждений будем считать, что друзья усаживаются за стол поочередно. Будем считать, что первой усаживается за стол Андрей. У него 6 вариантов выбора стула. Вторым усаживается Борис, и независимо выбирает стул из 5 оставшихся. Витя делает свой выбор третьим и на выбор у него будет 4 стула. У Гриши будет уже 3 варианта, у Димы – 2, у Егора – 1. По правилу умножения получаем:

Ответ – 720 дней или почти 2 года.

Учитель: Как мы видим, условия задач разные, а решения, по сути дела, одинаковы. Удобно, поэтому ввести и одинаковые обозначения для этих ответов.

Определение: произведение всех натуральных чисел от 1 до п включительно называется п – факториал и обозначается символом п!

Знак п ! читается “Эн факториал”, что в дословном переводе с английского языка обозначает “состоящий из п множителей”. Отметим важную особенность этой величины – ее быстрый рост.

Вычислите:

а) 1!; б) 2!; в) 3!; г) 4!; д) 5!; е)10!

Считают, что 0! =1 (записать)

Задача 5.

Учитель: ДРУЖБА – одно из важнейших богатств, которое может быть у человека. Недаром о дружбе слагаются стихи и песни, сочиняют пословицы и поговорки. Какие пословицы и поговорки о дружбе вы знаете?

Друзья познаются в беде.
Не имей сто рублей, а имей сто друзей.
Один в поле не воин.
Сам погибай, а товарища выручай.
Старый друг лучше новых двух.
Без друга в жизни туго.

Молодцы! Для каждого человека очень важно, чтобы у него были хорошие, настоящие друзья. Давайте решим несколько примеров с применением нового понятия – факториал, и узнаем новую пословицу о дружбе.

7!+ 8! – (13 - 5) 2 6! – 5!

Карточки с ответами выполняют с запасом (есть карточки с числами, не являющимися ответами).

Таблица после заполнения:

7!+ 8! – (13 - 5) 2 6! – 5!
5048 40256 600 24 7
Нет друга - ищи, а нашел - береги

Задание 6.

К Васе в гости пришли 4 друзей, и они собираются смотреть новый фильм. У Васи в комнате есть кресло и еще он принес 4 стула из кухни. Кресло он, несомненно, займет сам, а на стульях рассадит своих друзей. Вася подсчитал, что рассадить друзей он сможет 24 способами.

Учитель: Правильно ли рассчитал Вася? (Да, с точки зрения математики)

Хорошо ли он поступил? (Обсуждается моральный аспект проблемы)

4. Физкультурная минутка.

Учитель: А теперь давайте немного отдохнем, а для этого проведем физкультурную минутку. Если я правильно прочитаю выражение, то вы встаете и поднимаете руки вверх, а если неправильно – садитесь, руки в бок.

Встали. Начинаем, будьте внимательны.

Выражение Слова учителя Верно / неверно
5! +3 Сумма 5! и 3 +
2 – 7! Произведение 2 и 7! -
4х: 2! Частное 4х и 2! +
5! + 7! + 3! Сумма 5!, 7! и 3! +
20! - 19! Частное 20! и 19! -

6. Самостоятельная работа.

Учитель: Ну, а теперь, когда мы хорошо отдохнули, давайте проверим, что мы научились делать сегодня на уроке. Для этого выполним самостоятельную работу.

Вариант 1 Вариант 2
1. В 5 классе в среду 5 уроков: математика, русский язык, литература, музыка и труд. Сколько вариантов расписания на день можно составить? 1. Шесть разных писем раскладывают в 6 разных конвертов. Сколько существует способов такого раскладывания?
2. Вычислите:

а) 6! – 2; б) 4! + (2+3) 2

2. Вычислите:

а) 3 2 + 5! б) (9-4) 2 + 4!

3. Сколькими способами 5 мальчиков могут занять очередь к билетной кассе, если первым все равно будет Толя? 3. Сколькими способами Даша может съесть обед, состоящий из первого, второго, третьего и пирожного, если первым она наверняка съест пирожное?

7. Домашнее задание.

Придумать, записать условия и решения 2 комбинаторных задач на тему “Семья”. Оформить на листах А4, можно выполнить рисунки к задачам.

8. Итог урока.

Давайте подведем итоги урока.

Что нового узнали? (Получили правило умножения, рассмотрели его геометрическую модель – дерево вариантов, ввели новое понятие – факториал)

Что понравилось?

Что запомнилось?

Оценки за урок.

Литература:

  1. Е.А.Бунимович, В.А. Булычев. Вероятность и статистика в курсе математики общеобразовательной школы: лекции 1- 4, 5 – 8. – М.: Педагогический университет “Первое сентября”, 2006.
  2. Виленкин Н.Я. Математика. 5 класс: учебник для общеобразоват. учреждений/ Н.Я.Виленкин и др. – М. : Мнемозина, 2009.
  3. Смыкалова Е.В. Дополнительные главы по математике для учащихся 5 класса. СПб: СМИО. Пресс, 2006.
  4. Мордкович А.Г. События. Вероятности. Статистическая обработка данных: Доп. Параграфы к курсу алгебры 7-9 кл. общеобразовательных учреждений / А.Г. Мордкович, П.В. Семенов. – М.: Мнемозина, 2006.

Комбинаторика - раздел математики. Основные понятия и формулы комбинаторики как науки применяются во всех сферах жизни.

Неудивительно, что она включена в программу 11 класса, а также во вступительные испытания во многих ВУЗах РФ. Ее основы лежат в прикладном искусстве многих сфер деятельности человека.

Ее история насчитывает более 6 веков. Первые комбинаторные задачи появились в трудах философов и математиков Средневековья.

Представители того научного мира пытались найти методы решения таких задач, их базовые правила и понятия, утвердить уникальные формулы и уравнения для тех, кто ещё не встречался с ними. Такая информация в наше время называется информацией «для чайников».

Попытаемся разобраться в аспектах этой области науки: каковы элементы, свойства, правила, методы и основное ее применение в нашей жизни? Конечно, всю область в одной статье невозможно охватить. Поэтому ниже будет представлено всё самое основное.

Что такое комбинаторика в математике

Суть этого термина дают книги прошлых лет: это раздел математики, занимающийся операциями со множеством элементов.

В интернете есть учебники по информатике и математике для детей, школьников, сборники материалов и задач для начинающих, где в доступном виде объяснена «занимательная» комбинаторика. Нужно твердо выяснить, как решать подобные задачи.

В младших классах задачи на эту тему решают на дополнительных кружках, а в школах с углубленным изучением математики — на основных уроках. К тому же, задачи по комбинаторике включены в олимпиады всех уровней.

Основные понятия

Их несколько:

  1. Элемент – любой объект или явление, входящий в искомое множество.
  2. Сочетание – подмножества, находящиеся в произвольном порядке в исходном множестве.
  3. Перестановка – элементы во множестве находятся в строго определенном порядке.
  4. Размещение – упорядоченные подмножества в исходном множестве.

Правило произведения

Является одним из основных правил при решении таких задач и звучит так:

При выборе элемента А из n способов и выборе элемента В из m способов верно утверждение, что выбрать пару А и В одновременно можно n * m способами.

Рассмотрим на конкретных примерах.

Задача №1.

В коробке лежит 2 мяча и 6 скакалок. Сколько существует способов достать 1 мяч и 1 скакалку?

Ответ прост: 2 * 6 = 12.

Задача №2.

Есть 1 кубик, 2 шарика, 3 цветка и 4 конфеты. Сколькими способами можно вытянуть кубик, шарик, цветок и конфету?

Решение аналогично: 1 * 2 * 3 * 4 = 24.

Причем левую часть можно записать гораздо проще: 4!

! в данном случае является не знаком препинания, а факториалом. С помощью него можно вычислить более сложные варианты и решать трудные задачи (существуют разные формулы, но об этом позже).

Задача №3.

Сколько двузначных чисел можно составить из 2 цифр?

Ответ: 2! = 2.

Задача №4.

Сколько десятизначных чисел можно составить из 10 цифр?

Правило суммы

Тоже является базовым правилом комбинаторики.

Если А можно выбрать n раз, а В - m раз, то А или В можно выбрать (n + m ) раз.

Задача №5.

В коробке лежат 5 красных, 3 желтых, 7 зеленых, 9 черных карандашей. Сколько есть способов вытащить 1 любой карандаш?

Ответ: 5 + 3 + 7 + 9 = 24.

Сочетания с повторениями и без повторений

Под этим термином понимают комбинации в произвольном порядке из множества n по m элементов.

Число сочетаний равно количеству таких комбинаций.

Задача №6.

В коробке находится 4 разных фрукта. Сколькими способами можно достать одновременно 2 разных фрукта?

Решение простое:

Где 4! – комбинация из 4 элементов.

С повторениями чуть сложней, комбинации считаются по такой формуле:

Задача №7.

Возьмем тот же самый случай, но при условии, что один фрукт возвращается в коробку.

В этом случае:

Размещения с повторениями и без повторений

Под этим определением понимают набор m элементов из множества n элементов.

Задача №8.

Из 3 цифр надо выбрать 2, чтобы получались разные двузначные числа. Сколько вариантов?

Ответ прост:

А как же быть с повторениями? Здесь каждый элемент может размещаться несколько раз! В таком случае общая формула будет выглядеть следующим образом:

Задача №9.

Из 12 букв латинского алфавита и 10 цифр натурального ряда надо найти все варианты составления автомобильного кода региона.

Перестановки с повторениями и без повторений

Под этим термином понимают все возможные комбинации из n элементного множества.

Задача №10.

Сколько возможных пятизначных чисел можно составить из 5цифр? А шестизначных из 6 цифр? Семизначных из 7 цифр?

Решения, согласно вышеприведенной формуле, следующие:

А как же быть с повторениями? Если в таком множестве есть одинаковые по своей значимости элементы, то перестановок будет меньше!

Задача №11.

В коробке есть 3 одинаковых карандаша и одна ручка. Сколько перестановок можно сделать?

Ответ прост: 4! / (3! * 1!) = 4.

Комбинаторные задачи с решениями

Примеры всех возможных типов задач с решениями были даны выше. Здесь попробуем разобраться с более сложными случаями, встречающимися в нашей жизни.

Типы задач Что требуется найти Методы решения
Магический квадрат Фигура, в которой сумма чисел в рядах и столбцах должна быть одинакова (его разновидность – латинский квадрат). Рекуррентные соотношения. Решается подобная же задача, но с гораздо меньшим множеством элементов по известным правилам и формулам.
Задача размещения Стандартная производственная задача (например, в лоскутной технике) — найти возможные способы разложения количества продуктов в ячейки в определенном порядке. Включения и исключения. Как правило, применяется при доказательстве различных выражений.
Задачи про торговцев Суть — найти все возможные пути прохождения людей из пункта А в пункт В. Траектории. Для этого вида задач характерно геометрическое построение возможных способов решения.

Заключение

Стоит изучать эту науку, поскольку в век быстрой модернизации технологий потребуются специалисты, способные предоставить различные решения тех или иных практических задач.

Урок по математике в 5 классе « Знакомьтесь, комбинаторика» Тема урока: Цель урока : сформулировать первоначальные навыки комбинаторных задач с помощью перебора возможных вариантов.
Задачи урока:

Образовательные:

    Развитие умения решать комбинаторные задачи методом полного перебора вариантов;

    Выработка умения применять математическую теорию в конкретных ситуациях;

    Знакомство учащихся с элементами гуманитарного знания, связанного с математикой.

Развивающие:

    Развитие умения самостоятельно выбирать способ решения и умения обосновать выбор;

    Развитие умения решать задачи путём только логических рассуждений;

    Развитие умения делать выбор рационального способа кодирования;

    Развитие коммуникативных и творческих способностей учащихся.

Воспитательные:
    Воспитывать чувство ответственности за качество и результат выполняемой работы; Прививать сознательное отношение к труду;
    Формировать ответственность за конечный результат .
Оборудование:
    интерактивная доска; раздаточный материал (цветные полоски: белая, синяя, красная); карточки с задачами.
Ход урока.
    Организационный момент. Изучение нового материала. Практическая часть. Рефлексия Выставление отметок Задание домашней работы
    Организационный момент.
Учитель: Здравствуйте, ребята! Очень часто в жизни приходится делать выбор, принимать решение. Это сделать очень трудно, не потому что выбора нет, а потому что приходится выбирать из множества возможных вариантов, различных способов, комбинаций. И нам всегда хочется, чтобы этот выбор был оптимальный. Задачи, которые мы сегодня будем решать помогут вам творить, думать необычно, оригинально, видеть то, мимо чего вы часто проходили не замечая. И еще сегодня в очередной раз убедимся, что наш мир полон математики и продолжим исследование на предмет выявления математики вокруг нас. Знаете ли вы, что такое «царственная осанка»? Попробуем принять царственную позу: спина прямая, мышцы головы без напряжения, выражение лица очень значительное: ведь вы так хорошо умеете считать, как не умеют царственные особы. Очень быстро активизируем свой мозг. Для этого интенсивно помассажируем межбровную точку: указательным пальцем правой руки делаем 5 круговых движений в одну сторону и в другую. Повторим это 2 – 3 раза
    Актуализация темы и мотивация.
Давайте решим задачу №1, Задача 1 . У кассы кинотеатра стоят четверо ребят. У двух из них сторублевые купюры, у других двух – пятидесятирублевые. (Учитель вызывает 4 учеников к доске и дает им модели купюр). Билет в кино стоит 50 рублей. В начале продажи касса пуста. (Учитель вызывает «кассира» и дает ему «билеты») . Как должны расположиться ребята, чтобы никому не пришлось ждать сдачи? Разыгрываем сценку, с помощью которой можно найти два возможных варианта решения:
    50 рублей, 100 рублей, 50 рублей, 100 рублей; 50 рублей, 50 рублей, 100 рублей, 100 рублей (слайд №2 и №3).
Задача №2 . Несколько стран решили использовать для своего государственного флага символику в виде трех горизонтальных полос одинаковой ширины разных цветов – белого, синего, красного. Сколько стран могут использовать такую символику при условии, что у каждой страны – свой флаг? (Учащимся раздаются цветные полоски (белый, синий, красный) и предлагается составить разные варианты флагов? (Слайд№4) Учитель: Прежде чем переходить к следующему этапу урока, немного отдохнём. Сидя на стуле – расслабьтесь, примите позу пиджака, висящего на вешалке, «Постреляйте» глазами в соседей. Заведите локти за спину как можно сильнее, затем с силой обнимите себя.
    Изучение нового материала .
Учитель: Итак, при решении этих задач мы осуществили перебор всех возможных вариантов, или, как обычно говорят в этих случаях, всех возможных комбинаций. Поэтому подобные задачи называют комбинаторными. Просчитывать возможные (или невозможные) варианты в жизни приходится довольно часто, поэтому полезно познакомиться с комбинаторными задачами, а раздел математики, занимающийся решением этих задач, называется комбинаторикой. (Слайд№5) Определение учащиеся записывают в тетрадь:

Комбинаторика – это раздел математики, посвященный решению задач выбора и расположения заданных элементов по заданным правилам

Обычный вопрос в комбинаторных задачах – это « Сколькими способами …?» или

« Сколько вариантов …?»

Учитель : Давайте еще раз вернемся к задаче о флагах, решим ее используя перебор возможных вариантов: (слайд №7) КБС КСБ БСК БКС СБК СКБ Ответ: 6 вариантов. Итак, при решении этой задачи мы искали способ перебора возможных вариантов. Во многих случаях оказывается полезным прием построения картинки – схемы перебора вариантов. Это, во – первых, наглядно, во- вторых, позволяет нам все учесть, ничего не пропустить.

Решение Флаг

Варианты БСК, БКС, СБК, СКБ, КБС, КСБ.

Ответ: 6 вариантов.

Вопрос, ответ на который должны знать все, какой из представленных вариантов флагов – государственный флаг РФ.(Слайд№7)

Оказывается, Не только флаг России имеет эти три цвета. Есть государства, флаги которых, имеют такие же цвета.

КБС – Люксембург,

Нидерланды.

Франция СКБ

Учитель: Найдем правило решения таких задач путем логического рассуждения.

Разберем на примере цветных полосок. Возьмем белую полоску – её можно переставить 3 раза, возьмем синюю полоску – её можно переставить только 2 раза, т.к. одно из мест уже занято белой, возьмем красную полоску – её можно положить только 1 раз.

ИТОГО: 3 х 2 х 1=6

Основное правило произведения :

Правило умножения: если первый элемент в комбинации можно выбрать а способами, после чего второй элемент – b способами, то общее число комбинаций будет равно а х b . (слайд №8)

Физкультминутка для глаз. (слайд №9)

Упражнение « Фигуры».

Нарисовать глазами квадрат, круг, треугольник, овал, ромб по часовой стрелке, а затем- против.

    Практическая часть

Учитель: А теперь перейдем к математическим задачам. (раздаем карточки с задачами)

    У одного довольно знаменитого мушкетера в гардеробе имеются 3 элегантных шляпы,4 чудных плаща и 2 пары отличных сапог. Сколько вариантов костюма ему можно составить? (Выбираем по одному элементу из трех множеств, то есть, составляем «тройку», значит, по правилу умножения получаем 3 4 2 = 24 варианта костюма.)

    В футбольной команде 11 человек. Необходимо выбрать капитана и его заместителя. Сколькими способами можно это сделать? (Всего 11 человек, значит, капитана можно выбрать 11 способами, осталось 10 футболистов, из которых можно выбрать заместителя капитана. Итак, пару капитана и его заместителя можно выбрать 11 10 = 110 способами.)

    Сколько различных двузначных чисел можно составить, используя цифры 1, 4, 7, если допустить повторение цифр? (Должно получиться двузначное число – всего две позиции. На первую позицию можно поставить любую из предложенных цифр – 3 варианта выбора, на вторую позицию, с учетом возможности повтора цифры, тоже 3 варианта выбора. Значит, пару цифр мы составляем 3 3 = 9 способами, т.е. получится 9 чисел.

    Сколько различных трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5 при условии, что ни одна цифра не повторяется? (Трехзначное число: первая позиция – 5 вариантов цифр, вторая позиция с учетом исключения повторов цифр - 4 варианта, третья позиция – 3 варианта. Получаем 5 4 3 = 60 чисел.)

    Сколько различных двузначных чисел можно составить из цифр 0, 1, 2, 3, если цифры: а) могут повторяться; б) не могут повторяться? (а) Двузначное число, как и любое многозначное, не может начинаться с 0, поэтому на первую позицию можно поставить лишь 3 из имеющихся 4-х цифр, 3 варианта выбора, на вторую позицию, с учетом повтора, можно поставить любую из цифр – 4 варианта выбора. Поэтому получается 3 4 = 12 чисел; б) Первая позиция – 3 варианта, вторая позиция – 3 варианта, т.к. повтор исключается. Получаем 3 3 = 9 чисел.)

    Шифр для сейфа состоит из пяти различных цифр. Сколько различных вариантов составления шифра? (5 4 3 2 1 = 120 вариантов.) Сколькими способами можно разместить 6 человек за столом, на котором поставлено 6 приборов? (6 5 4 3 2 1 = 720 способов.)

    6 приборов? (6 · 5 · 4 · 3 · 2 · 1 = 720 способов.)

    (8 · 7 · 6 · 5 · 4 = 6720 вариантов.)

    (Используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 – всего 10 цифр, исключая по условию 0 и 9 в начале номера, с учетом возможности повтора, получаем 8 · 10 · 10 · 10 · 10 · 10 · 10 = 8 000 000 номеров.)

    Рефлексия

Учитель: Ребята вот и подходит к концу наш урок. Как вы считаете, мы сегодня достигли нашей цели, почему? Что было трудным на уроке, как с эти можно бороться? Подумайте и поставьте себе за свой труд и работу отметку, поставьте сами, эту отметку никто из ребят не увидит, попробуйте быть честным с самим собой. Полностью ли вы участвовали в работе на уроке? Что нужно сделать, чтобы результат был лучше?

Кроме того, ученикам предлагается ответить на 3 блиц - вопроса:

    На сегодняшнем уроке мне было … (легко, обычно, трудно)

    Новый материал я … (усвоил и могу применить, усвоил и затрудняюсь применить, не усвоил)

    Моя самооценка за урок …

Ответы на приведенные вопросы можно не подписывать, т.к. их основная функция помочь учителю проанализировать урок и его результаты

    Подведение итогов . Выставление отметок

Учитель: Я очень рада, что многие из вас сегодня хорошо поработали, узнали много нового, но я очень хотела бы, чтобы все вы дома хорошо поработали и не получили на следующем уроке двоек.

7. Задание домашней работы :

1)Составить задачу о своем классе

2) Несколько стран решили использовать для своего государственного флага символику в виде 3 горизонтальных полос разной ширины, разных цветов – белый, синий, красный. Сколько стран могут использовать такую символику при условии,что у каждой страны свой флаг?

3) а) Сколько двузначных чисел можно составить из цифр 1, 3, 5, 7, 9?

б) Сколько двузначных чисел можно составить из цифр 1, 3, 5, 7, 9 при условии, что цифры не должны повторяться

Учитель : Итак, я была рада встрече с вами, интересуйтесь математикой, это, несомненно, отразится в положительную сторону в ваших размышлениях и действиях. Урок окончен. Всем спасибо. До свидания.

Литература:

Е.А.Бунимович, В.А. Булычев. Вероятность и статистика в курсе математики общеобразовательной школы: лекции 1- 4, 5 – 8. – М.: Педагогический университет “Первое сентября”, 2006.

Виленкин Н.Я. Математика. 5 класс: учебник для общеобразоват. учреждений/ Н.Я.Виленкин и др. – М. : Мнемозина, 2009.

Смыкалова Е.В. Дополнительные главы по математике для учащихся 5 класса. СПб: СМИО. Пресс, 2006.

5 класс. «Математика-5», И.И. Зубарева, А.Г. Мордкович, 2004 год.

Задачи (карточки)

    У одного довольно знаменитого мушкетера в гардеробе имеются 3 элегантных шляпы,4 чудных плаща и 2 пары отличных сапог. Сколько вариантов костюма ему можно составить?

    В футбольной команде 11 человек. Необходимо выбрать капитана и его заместителя. Сколькими способами можно это сделать?

    Сколько различных двузначных чисел можно составить, используя цифры 1, 4, 7, если допустить повторение цифр

    Сколько различных трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5 при условии, что ни одна цифра не повторяется?

    Сколько различных двузначных чисел можно составить из цифр 0, 1, 2, 3, если цифры: а) могут повторяться; б) не могут повторяться?

    Шифр для сейфа состоит из пяти различных цифр. Сколько различных вариантов составления шифра?

    Сколькими способами можно разместить 6 человек за столом, на котором поставлено 6 приборов?

    В пятом классе изучаются 8 предметов. Сколько различных вариантов расписания можно составить на понедельник, если в этот день должно быть 5 уроков и все уроки – разные?
  1. Сколько вариантов семизначных телефонных номеров можно составить, если исключить из них номера, начинающиеся с 0 и 9?

Ответы

    Выбираем по одному элементу из трех множеств, то есть, составляем «тройку», значит, по правилу умножения получаем 3 4 2 = 24 варианта костюма.

    Всего 11 человек, значит, капитана можно выбрать 11-ю способами, осталось 10 футболистов, из которых можно выбрать заместителя капитана. Итак, пару, капитана и его заместителя, можно выбрать 11 10 = 110 способами.

    Должно получиться двузначное число – всего две позиции. На первую позицию можно поставить любую из предложенных цифр – 3 варианта выбора, на вторую позицию, с учетом возможности повтора цифры, тоже 3 варианта выбора. Значит, пару цифр мы составляем 3 3 = 9 способами, т.е. получится 9 чисел.

    Трехзначное число: первая позиция – 5 вариантов цифр, вторая позиция, с учетом исключения повторов цифр, - 4 варианта, третья позиция – 3 варианта. Получаем 5 4 3 = 60 чисел.

    (а) Двузначное число, как и любое многозначное, не может начинаться с 0, поэтому на первую позицию можно поставить лишь 3 из имеющихся 4-х цифр, 3 варианта выбора, на вторую позицию, с учетом повтора, можно поставить любую из цифр – 4 варианта выбора. Поэтому получается 3 4 = 12 чисел; б) Первая позиция – 3 варианта, вторая позиция – 3 варианта, т.к. повтор исключается. Получаем 3 3 = 9 чисел.

    5 4 3 2 1 = 120 вариантов.
  1. 6 5 4 3 2 1 = 720 способов

  2. 8 7 6 5 4 = 6720 вариантов

    Используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 – всего 10 цифр, исключая по условию 0 и 9 в начале номера, с учетом возможности повтора, получаем 8 10 10 10 10 10 10 = 8 000 000 номеров.

Посвященный решению задач выбора и расположения элементов некоторого, обычно конечного, множества в соответствии с заданными правилами. Например, сколькими способами можно выбрать 6 карт из колоды, состоящей из 36 карт, или сколькими способами можно составить очередь, состоящей из10 человек и т.д. Каждое правило в комбинаторике определяет способ построения некоторой конструкции, составленной из элементов исходного множества и называемой комбинацией . Основная цель комбинаторики состоит в подсчете количества комбинаций, которые можно составить из элементов исходного множества в соответствии с заданным правилом. Простейшими примерами комбинаторных конструкций являются перестановки, размещения и сочетания.

Рождение комбинаторики связано с работами Б. Паскаля и П. Ферма по поводу азартных игр, большой вклад внесли Лейбниц, Бернулли, Эйлер. В настоящее время интерес к комбинаторике связан с развитием компьютеров. Нас в комбинаторике будет интересовать возможность определения количественно различных подмножеств конечных множеств для вычисления вероятности классическим способом.

Для определения мощности множества, которое соответствует тому или иному событию, полезно разобраться с двумя правилами комбинаторики: правило произведения и правило суммы (иногда их называют принципами умножения и сложения соответственно).

Правило nроизведения: пусть из некоторого конечного множества

1-й объект можно выбрать k 1 способами,

2-ой объект - k 2 способами,

n -ый объект - k n способами. (1.1)

Тогда произвольный набор, перечисленных n объектов из данного множества можно выбрать k 1 , k 2 , …, k n способами.

Пример 1. Сколько существует трехзначных чисел с разными цифрами?

Решение . В десятичной системе исчисления десять цифр: 0,1,2,3,4,5,6,7,8,9. На первом месте может стоять любая из девяти цифр (кроме нуля). На втором месте - любая из оставшихся 9 цифр, кроме выбранной. На последнем месте любая из оставшихся 8 цифр.

По правилу произведения 9·9·8 = 648 трёхзначных чисел имеют разные цифры.

Пример 2. Из пункта в пункт ведут 3 дороги, а из пункта в пункт - 4 дороги. Сколькими способами можно совершить поездку из в через ?

Решение . В пункте есть 3 способа выбора дороги в пункт , а в пункте есть 4 способа попасть в пункт . Согласно принципу умножения, существует 3×4 = 12 способов попасть из пункта в пункт .

Правило суммы: при выполнении условий (1.1), любой из объектов можно выбрать k 1 +k 2 +…+k n способами.

Пример 3. Сколько существует способов выбора одного карандаша из коробки, содержащей 5 красных, 7 синих, 3 зеленых карандаша.


Решение . Один карандаш, по правилу суммы, можно выбрать 5+7+3 = 15 способами.

Пример 4. Пусть из города в город можно добраться одним авиамаршрутом, двумя железнодорожными маршрутами и тремя автобусными маршрутами. Сколькими способами можно добраться из города в город ?

Решение . Все условия принципа сложения здесь выполнены, поэтому, в соответствии с этим принципом, получим 1+2+3 = 6 способов.

Рассмотрим пример, иллюстрирующий различие принципов умножения и сложения.

Пример 5. В магазине электроники продаются три марки телевизоров и два вида видеомагнитофонов. У покупателя есть возможности приобрести либо телевизор, либо видеомагнитофон. Сколькими способами он может совершить одну покупку? Сколько различных комплектов, содержащих телевизор и магнитофон, можно приобрести в этом магазине, если покупатель собирается приобрести в паре и телевизор, и видеомагнитофон?

Решение . Один телевизор можно выбрать тремя способами, а магнитофон - другими двумя способами. Тогда телевизор или магнитофон можно купить 3+2=5 способами.

Во втором случае один телевизор можно выбрать тремя способами, после этого видеомагнитофон можно выбрать двумя способами. Следовательно, в силу принципа умножения, купить телевизор и видеомагнитофон можно 3×2 = 6 способами.

Рассмотрим теперь примеры, в которых применяются оба правила комбинаторики: и принцип умножения, и принцип сложения.

Пример 6. В корзине лежат 12 яблок и 10 апельсинов. Ваня выбирает либо яблоко, либо апельсин. После чего Надя выбирает из оставшихся фруктов и яблоко и апельсин. Сколько возможно таких выборов?

Решение . Ваня может выбрать яблоко 12 способами, апельсин - 10 способами. Если Ваня выбирает яблоко, то Надя может выбрать яблоко 11 способами, а апельсин - 10 способами. Если Ваня выбирает апельсин, то Надя может выбрать яблоко 12 способами, а апельсин - 9 способами. Таким образом, Ваня и Надя могут сделать свой выбор способами.

Пример 7. Есть 3 письма, каждое из которых можно послать по 6 адресам. Сколькими способами это можно сделать?

Решение . В данной задаче мы должны рассмотреть три случая:

а) все письма рассылаются по разным адресам;

б) все письма посылаются по одному адресу;

в) только два письма посылаются по одному адресу.

Если все письма рассылаются по разным адресам, то число таких способов легко находится из принципа умножения: n 1 = 6×5×4 = 120 способов. Если все письма посылаются по одному адресу, то таких способов будет n 2 = 6. Таким образом, остается рассмотреть только третий случай, когда только 2 письма посылаются по одному адресу. Выбрать какое-либо письмо мы можем 3 способами, и послать его по какому-либо выбранному адресу можем 6 способами. Оставшиеся два письма мы можем послать по оставшимся адресам 5 способами. Следовательно, послать только два письма по одному адресу мы можем n 3 =3×6×5=90 способами. Таким образом, разослать 3 письма по 6 адресам в соответствие с принципом сложения можно

способами.

Обычно в комбинаторике рассматривается идеализированный эксперимент по выбору наудачу k элементов из n . При этом элементы: а) не возвращаются обратно (схема выбора без возвращений); б) возвращаются обратно (схема выбора с возвращением).

1. Схема выбора без возвращений

Размещением из n элементов по k называют любой упорядоченный набор из k элементов, принадлежащих n - элементному множеству. Различные размещения отличны друг от друга или порядком элементов, или составом.

Число размещений из n элементов по k обозначается и вычисляется по формуле

(1.2)

где n ! = 1×2×3×…×n , 1! = 1, 0! = 1.

Пример 8. В соревнованиях участвует 10 человек, трое из них займут 1, 2, 3 место. Сколько существует различных вариантов?

Решение . В этом случае важен порядок распределения мест. Число различных вариантов равно

Перестановкой из n элементов называют размещение из n элементов по n. Число перестановок из n элементов обозначают P n и вычисляют по формуле

(1.3)

Пример 9. Сколько существует способов расстановки 10 книг на полке?

Решение . Общее число способов расстановки определяется как число перестановок (1.3) из 10 элементов и равно Р 10 = 10! = 3628 800.

2. Схема выбора с возвращениями

Если при выборе k элементов из n , элементы возвращаются обратно и упорядочиваются, то говорят, что это размещения с nовторениями .

Число размещений с повторениями:

Пример 11. В гостинице 10 комнат, каждая из которых может разместить четырех человек. Сколько существует вариантов размещения, прибывших четырех гостей?

Решение . Каждый следующий гость из 4 может быть помещён в любую из 10 комнат, так как рассматривается идеализированный опыт, поэтому общее число размещений, по формуле размещений с повторениями (1.5), равно

.

Если при выборе k элементов из n элементы возвращаются обратно без последующего упорядочивания, то говорят, что это сочетания с nовторениями. Число сочетаний с повторениями из n элементов по k определяется:

Пример 12. В магазине продается 10 видов тортов. Очередной покупатель выбил чек на три торта. Считая, что любой набор товаров равновозможен, определить число возможных заказов.

Решение . Число равновозможных заказов по формуле (1.6) равно

.