Домой / Информатика / Чему равен знак пи. Что такое число пи. Что такое число ПИ

Чему равен знак пи. Что такое число пи. Что такое число ПИ


Для вычисления сколько-нибудь большого количества знаков пи предыдущий способ уже не годится. Но существует большое количество последовательностей, сходящихся к Пи гораздо быстрее. Воспользуемся, например, формулой Гаусса:

p = 12arctan 1 + 8arctan 1 - 5arctan 1
4 18 57 239

Доказательство этой формулы несложное, поэтому мы его опустим.

Исходник программы, включающий в себя "длинную арифметику"

Программа вычисляет NbDigits первых цифр числа Пи. Функция вычисления arctan названа arccot, так как arctan(1/p) = arccot(p), но расчет происходит по формуле Тейлора именно для арктангенса, а именно arctan(x) = x - x 3 /3 + x 5 /5 - ... x=1/p, значит arccot(x) = 1/p - 1 / p 3 / 3 + ... Вычисления происходят рекурсивно: предыдущий элемент суммы делится и дает следующий.

/* ** Pascal Sebah: September 1999 ** ** Subject: ** ** A very easy program to compute Pi with many digits. ** No optimisations, no tricks, just a basic program to learn how ** to compute in multiprecision. ** ** Formulae: ** ** Pi/4 = arctan(1/2)+arctan(1/3) (Hutton 1) ** Pi/4 = 2*arctan(1/3)+arctan(1/7) (Hutton 2) ** Pi/4 = 4*arctan(1/5)-arctan(1/239) (Machin) ** Pi/4 = 12*arctan(1/18)+8*arctan(1/57)-5*arctan(1/239) (Gauss) ** ** with arctan(x) = x - x^3/3 + x^5/5 - ... ** ** The Lehmer"s measure is the sum of the inverse of the decimal ** logarithm of the pk in the arctan(1/pk). The more the measure ** is small, the more the formula is efficient. ** For example, with Machin"s formula: ** ** E = 1/log10(5)+1/log10(239) = 1.852 ** ** Data: ** ** A big real (or multiprecision real) is defined in base B as: ** X = x(0) + x(1)/B^1 + ... + x(n-1)/B^(n-1) ** where 0<=x(i) Work with double instead of long and the base B can ** be choosen as 10^8 ** => During the iterations the numbers you add are smaller ** and smaller, take this in account in the +, *, / ** => In the division of y=x/d, you may precompute 1/d and ** avoid multiplications in the loop (only with doubles) ** => MaxDiv may be increased to more than 3000 with doubles ** => ... */ #include #include #include #include long B=10000; /* Working base */ long LB=4; /* Log10(base) */ long MaxDiv=450; /* about sqrt(2^31/B) */ /* ** Set the big real x to the small integer Integer */ void SetToInteger (long n, long *x, long Integer) { long i; for (i=1; i/* ** Is the big real x equal to zero ? */ long IsZero (long n, long *x) { long i; for (i=0; i/* ** Addition of big reals: x += y ** Like school addition with carry management */ void Add (long n, long *x, long *y) { long carry=0, i; for (i=n-1; i>=0; i--) { x[i] += y[i]+carry; if (x[i]/* ** Substraction of big reals: x -= y ** Like school substraction with carry management ** x must be greater than y */ void Sub (long n, long *x, long *y) { long i; for (i=n-1; i>=0; i--) { x[i] -= y[i]; if (x[i]<0) { if (i) { x[i] += B; x--; } } } } /* ** Multiplication of the big real x by the integer q ** x = x*q. ** Like school multiplication with carry management */ void Mul (long n, long *x, long q) { long carry=0, xi, i; for (i=n-1; i>=0; i--) { xi = x[i]*q; xi += carry; if (xi>=B) { carry = xi/B; xi -= (carry*B); } else carry = 0; x[i] = xi; } } /* ** Division of the big real x by the integer d ** The result is y=x/d. ** Like school division with carry management ** d is limited to MaxDiv*MaxDiv. */ void Div (long n, long *x, long d, long *y) { long carry=0, xi, q, i; for (i=0; i/* ** Find the arc cotangent of the integer p (that is arctan (1/p)) ** Result in the big real x (size n) ** buf1 and buf2 are two buffers of size n */ void arccot (long p, long n, long *x, long *buf1, long *buf2) { long p2=p*p, k=3, sign=0; long *uk=buf1, *vk=buf2; SetToInteger (n, x, 0); SetToInteger (n, uk, 1); /* uk = 1/p */ Div (n, uk, p, uk); Add (n, x, uk); /* x = uk */ while (!IsZero(n, uk)) { if (p/* Two steps for large p (see division) */ Div (n, uk, p, uk); } /* uk = u(k-1)/(p^2) */ Div (n, uk, k, vk); /* vk = uk/k */ if (sign) Add (n, x, vk); /* x = x+vk */ else Sub (n, x, vk); /* x = x-vk */ k+=2; sign = 1-sign; } } /* ** Print the big real x */ void Print (long n, long *x) { long i; printf ("%d.", x); for (i=1; i/* ** Computation of the constant Pi with arctan relations */ void main () { clock_t endclock, startclock; long NbDigits=10000, NbArctan; long p, m; long size=1+NbDigits/LB, i; long *Pi = (long *)malloc(size*sizeof(long)); long *arctan = (long *)malloc(size*sizeof(long)); long *buffer1 = (long *)malloc(size*sizeof(long)); long *buffer2 = (long *)malloc(size*sizeof(long)); startclock = clock(); /* ** Formula used: ** ** Pi/4 = 12*arctan(1/18)+8*arctan(1/57)-5*arctan(1/239) (Gauss) */ NbArctan = 3; m = 12; m = 8; m = -5; p = 18; p = 57; p = 239; SetToInteger (size, Pi, 0); /* ** Computation of Pi/4 = Sum(i) *arctan(1/p[i])] */ for (i=0; i0) Add (size, Pi, arctan); else Sub (size, Pi, arctan); } Mul (size, Pi, 4); endclock = clock (); Print (size, Pi); /* Print out of Pi */ printf ("Computation time is: %9.2f seconds\n", (float)(endclock-startclock)/(float)CLOCKS_PER_SEC); free (Pi); free (arctan); free (buffer1); free (buffer2); }

Конечно, это не самые эффективные способы вычисления числа пи. Существует еще громадное количество формул. Например, формула Чудновского (Chudnovsky), разновидности которой используются в Maple. Однако в обычной практике программирования формулы Гаусса вполне хватает, поэтому эти методы не будут описываться в статье. Вряд ли кто-то хочет вычислять миллиарды знаков пи, для которых сложная формула дает большое увеличение скорости.

В числе ПИ очень много загадок. Вернее это даже не загадки, а своего рода какая-то Истина, которую за всю историю человечества никто еще не разгадал…

Что такое число Пи? Число ПИ - математическая «константа», выражающая отношение длины окружности к её диаметру. Сначала по невежеству его (это отношение) считали равным трем, что было грубо приближенно, но им хватало. Но когда времена доисторические сменились временами древними (т.е. уже историческими), то удивлению пытливых умов не было предела: оказалось, что число три весьма неточно выражает это соотношение. С течением времени и развитием наук это число стали полагать равным двадцати двум седьмым.

Английский математик Август де Морган назвал как-то число ПИ “…загадочным числом 3,14159…, которое лезет в дверь, в окно и через крышу”. Неутомимые ученые продолжали и продолжали вычислять десятичные знаки числа Пи, что является на самом деле дико нетривиальной задачей, потому что просто так в столбик его не вычислить: число это не только иррациональное, но и трансцендентное (это вот как раз такие числа, которые не вычисляются путем простых уравнений).

В процессе вычислений этих самых знаков было открыто множество разных научных методов и целых наук. Но самое главное – в десятичной части числа пи нет повторений, как в обычной периодической дроби, а число знаков после запятой у него – бесконечно. На сегодняшний день проверено, что в 500 млрд. знаков числа пи повторений действительно нет. Есть основания полагать, что их нет вообще.

Поскольку в последовательности знаков числа пи нет повторений – это значит, что последовательность знаков числа пи подчиняется теории хаоса, точнее, число пи – это и есть хаос, записанный цифрами. Более того, при желании, можно этот хаос представить графически, и есть предположение, что этот Хаос разумен.

В 1965-м году американский математик М. Улэм, сидя на одном скучном собрании, от нечего делать начал писать на клетчатой бумаге цифры, входящие в число пи. Поставив в центре 3 и двигаясь по спирали против часовой стрелки, он выписывал 1, 4, 1, 5, 9, 2, 6, 5 и прочие цифры после запятой. Попутно он обводил все простые числа кружками. Каково же было его удивление и ужас, когда кружки стали выстраиваться вдоль прямых!

В десятичном хвосте числа пи можно отыскать любую задуманную последовательность цифр. Любая последовательность цифр в десятичных знаках числа пи рано или поздно найдется. Любая!

Ну и что? – спросите вы. А то. Прикиньте: если там есть ваш телефон (а он есть), то ведь там же есть и телефон той девушки, которая не захотела дать вам свой номер. Более того, там есть и номера кредиток, и даже все значения выигрышных номеров завтрашнего тиража лотереи. Да что там, вообще всех лотерей на много тысячелетий вперед. Вопрос в том, как их там отыскать…

Если зашифровать все буквы цифрами, то в десятичном разложении числа пи можно найти всю мировую литературу и науку, и рецепт изготовления соуса бешамель, и все священные книги всех религий. Это строгий научный факт. Ведь последовательность БЕСКОНЕЧНА и сочетания в числе ПИ не повторяются, следовательно она содержит ВСЕ сочетания цифр, и это уже доказано. А раз все, то ВСЕ. В том числе и такие, которые соответствуют выбранной вами книге.

А это опять-таки означает, что там содержится не только вся мировая литература, которая уже написана (в частности и те книги, которые сгорели и т.д.), но и все книги, которые еще БУДУТ написаны. В том числе и Ваши статьи на сайтах. Получается, что это число (единственное разумное число во Вселенной!) и управляет нашим миром. Надо только рассмотреть побольше знаков, найти нужный участок и расшифровать его. Это чем-то сродни парадоксу со стадом шимпанзе, долбящем по клавиатуре. При достаточно долгом (можно даже оценить это время) эксперименте они напечатают все пьесы Шекспира.

Тут же напрашивается аналогия с периодически появляющимися сообщениями о том, что в Ветхом Завете, якобы, закодированы послания потомкам, поддающиеся прочтению с помощью хитроумных программ. Отметать сходу такую экзотическую особенность Библии не совсем мудро, кабаллисты веками занимаются поиском таких пророчеств, но хотелось бы привести сообщение одного исследователя, который с помощью компьютера нашел в Ветхом завете слова о том, что в Ветхом Завете нет никаких пророчеств. Скорее всего, в очень большом тексте, так же, как и в бесконечных цифрах числа ПИ, можно не только закодировать любую информацию, но и “найти” фразы, изначально не заложенные туда.

Для практики, в пределах Земли достаточно 11 знаков после точки. Тогда, зная, что радиус Земли равен 6400 км или 6,4*1012 миллиметров, получится, что мы, отбросив двенадцатую цифру в числе ПИ после точки при вычислении длины меридиана, ошибемся на несколько миллиметров. А при расчете длины Земной орбиты при вращении вокруг Солнца (как известно, R=150*106 км = 1,5*1014 мм) для такой же точности достаточно использовать число ПИ с четырнадцатью знаками после точки, да что уж там мелочиться - диаметр нашей Галактики около 100.000 световых лет (1 световой год примерно равен 1013 км) или 1018 км или 1030 мм., а еще в XVII веке были получены 34 знака числа ПИ, избыточные для таких расстояний, а их на данный момент вычислено до 12411-триллионного знака !!!

Отсутствие периодически повторяющихся цифр, а именно, исходя их формулы Длина окружности=Пи*D окружность не замыкается, так как нет конечного числа. Этот факт также может тесно быть связан с спиральным проявлением в нашей жизни …

Есть еще гипотеза о том, что все (или некоторые) универсальные постоянные (постоянная Планка, число Эйлера, универсальная гравитационная постоянная, заряд электрона и т.д.) со временем меняют свои значения, так как меняется кривизна пространства из-за перераспределения материи или по другим, не известным нам причинам.

Рискуя навлечь гнев просвещенного сообщества, можем предположить, что и рассматриваемое сегодня число ПИ, отражающее свойства Вселенной, может со временем меняться. Во всяком случае, никто не может нам запретить заново найти значение числа ПИ, подтвердив (или не подтвердив) имеющиеся значения.

10 интересных фактов про число ПИ

1. История числа насчитывает не одно тысячелетие, почти столько, сколько существует наука математика. Конечно, точное значение числа рассчитали не сразу. Поначалу отношение длины окружности к диаметру считали равным 3. Но с течением времени, когда начала развиваться архитектура, потребовалось более точное измерение. Кстати, число существовало, а вот буквенное обозначение оно получило только в начале XVIII века (1706 год) и происходит от начальных букв двух греческих слов, означающих «окружность» и «периметр». Буквой «π» число наделил математик Джонс, а прочно вошла в математику она уже в 1737 году.

2. В разные эпохи и у разных народов число Пи имело разное значение. Например, в Древнем Египте оно равнялось 3,1604, у индусов оно приобрело значение 3,162, китайцы пользовались числом, равным 3,1459. С течением времени π рассчитывали все точнее, а когда появилась вычислительная техника, то есть компьютер, оно стало насчитывать более 4 миллиардов знаков.

3. Есть легенда, точнее так считают специалисты, что число Пи использовали при строительстве Вавилонской башни. Однако не гнев божий стал причиной ее обрушения, а неправильные расчеты при строительстве. Мол, древние мастера ошиблись. Подобная версия существует касательно храма Соломона.

4. Примечательно, что значение числа Пи пытались вводить даже на уровне государства, то есть посредством закона. В 1897 году в штате Индиана подготовили билль. Согласно документу Пи равнялось 3,2. Однако ученые вовремя вмешались и предотвратили таким образом ошибку. В частности, против билля выступил профессор Пердью, присутствовавший на законодательном собрании.

5. Интересно, что свое имя имеют несколько чисел в бесконечной последовательности Пи. Так, шесть девяток числа Пи носят имя американского физика. Как-то Ричард Фейнман читал лекцию и ошарашил публику замечанием. Он сказал, что хотел бы наизусть выучить цифры числа Пи до шести девяток только для того, чтобы под конец рассказа произнести шесть раз «девять», намекая на то, что его значение рационально. Тогда как на самом деле оно иррационально.

6. Математики всего мира не прекращают вести исследования, связанные с числом Пи. Оно буквально окутано некой тайной. Некоторые теоретики даже полагают, что в нем заключена вселенская истина. Чтобы обмениваться знаниями и новой информацией о Пи, организовали Пи-клуб. Вступить в него непросто, нужно иметь незаурядную память. Так, желающих стать членом клуба экзаменуют: человек должен по памяти рассказать как можно больше знаков числа Пи.

7. Придумали даже различные техники для запоминания числа Пи после запятой. Например, придумывают целые тексты. В них слова имеют то же количество букв, что и соответствующая цифра после запятой. Чтобы еще упростить запоминание такого длинного числа, сочиняют стихи по тому же принципу. Члены Пи-клуба частенько развлекаются таким образом, а заодно тренируют память и сообразительность. Например, такое хобби было у Майка Кейта, который восемнадцать лет назад придумал рассказ, каждое слово в котором равнялось почти четырем тысячам (3834) первых знаков числа Пи.

8. Есть даже люди, поставившие рекорды по запоминанию знаков Пи. Так, в Японии Акира Харагучи наизусть выучил больше восьмидесяти трех тысяч знаков. А вот отечественный рекорд не такой выдающийся. Житель Челябинска сумел наизусть произнести только две с половиной тысячи чисел после запятой числа Пи.

9. День числа Пи отмечают больше четверти века, с 1988 года. Однажды физик из научно-популярного музея в Сан-Франциско Ларри Шоу заметил, что 14 марта по написанию совпадает с числом Пи. В дате месяц и число образуют 3.14.

10. Есть любопытное совпадение. 14 марта родился великий ученый Альберт Эйнштейн, создавший, как известно, теорию относительности.

ЧИСЛО p – отношение длины окружности к ее диаметру, – величина постоянная и не зависит от размеров окружности. Число, выражающее это отношение, принято обозначать греческой буквой 241 (от «perijereia » – окружность, периферия). Это обозначение стало употребительным после работы Леонарда Эйлера , относящейся к 1736, однако впервые оно было употреблено Уильямом Джонсом (1675–1749) в 1706. Как и всякое иррациональное число, оно представляется бесконечной непериодической десятичной дробью:

p = 3,141592653589793238462643… Нужды практических расчетов, относящихся к окружностям и круглым телам, заставили уже в глубокой древности искать для 241 приближений с помощью рациональных чисел. Сведения о том, что окружность ровно втрое длиннее диаметра, находятся в клинописных табличках Древнего Междуречья. Такое же значение числа p есть и в тексте Библии: «И сделал литое из меди море, – от края до края его десять локтей, – совсем круглое, вышиною в пять локтей, и снурок в тридцать локтей обнимал его кругом» (3 Цар. 7. 23). Так же считали и древние китайцы. Но уже во 2 тыс. до н.э. древние египтяне пользовались более точным значением числа 241, которое получается из формулы для площади круга диаметра d :

Этому правилу из 50-й задачи папируса Райнда соответствует значение 4(8/9) 2 » 3,1605. Папирус Райнда, найденный в 1858, назван так по имени его первого владельца, его переписал писец Ахмес около 1650 до н.э., автор же оригинала неизвестен, установлено только, что текст создавался во второй половине 19 в. до н.э. Хотя каким образом египтяне получили саму формулу, из контекста неясно. В так называемом Московском папирусе, который был переписан неким учеником между 1800 и 1600 до н.э. с более древнего текста, примерно 1900 до н.э., есть еще одна интересная задача о вычислении поверхности корзины «с отверстием 4½». Неизвестно, какой формы была корзина, но все исследователи сходятся во мнении, что и здесь для числа p берется то же самое приближенное значение 4(8/9) 2 .

Чтобы понять, каким образом древние ученые получили тот или иной результат, нужно попытаться решить задачу, используя только знания и приемы вычислений того времени. Именно так поступают исследователи старинных текстов, однако решения, которые им удается найти, вовсе не обязательно «те самые». Очень часто для одной задачи предлагается несколько вариантов решения, каждый может выбрать себе по вкусу, однако никто не может утверждать, что именно им пользовались в древности. Относительно площади круга кажется правдоподобной гипотеза А.Е.Раик, автора многочисленных книг по истории математики: площадь круга диаметра d сравнивается с площадью описанного вокруг него квадрата, из которого по очереди удаляются малые квадраты со сторонами и (рис. 1). В наших обозначениях вычисления будут выглядеть так: в первом приближении площадь круга S равна разности между площадью квадрата со стороной d и суммарной площадью четырех малых квадратов А со стороной d :

В пользу этой гипотезы свидетельствуют аналогичные вычисления в одной из задач Московского папируса, где предлагается сосчитать

С 6 в. до н.э. математика стремительно развивалась в Древней Греции. Именно древнегреческие геометры строго доказали, что длина окружности пропорциональна ее диаметру (l = 2 p R ; R – радиус окружности, l – ее длина), а площадь круга равна половине произведения длины окружности и радиуса:

S = ½ l R = p R 2 .

Эти доказательства приписывают Евдоксу Книдскому иАрхимеду .

В 3 в. до н.э. Архимед в сочинении Об измерении круга вычислил периметры вписанных в окружность и описанных около нее правильных многоугольников (рис. 2) – от 6- до 96-угольника. Таким образом он установил, что число p находится между 3 10/71 и 3 1/7, т.е. 3,14084 < p < 3,14285. Последнее значение до сих пор используется при расчетах, не требующих особой точности. Более точное приближение 3 17/120 (p » 3,14166) нашел знаменитый астроном, создатель тригонометрии Клавдий Птолемей (2 в.), но оно не вошло в употребление.

Индийцы и арабы полагали, что p = . Это значение приводит так же и индийский математик Брахмагупта (598 – ок. 660). В Китае ученые в 3 в. использовали значение 3 7/50, которое хуже приближения Архимеда, но во второй половине 5 в. Цзу Чун Чжи (ок. 430 – ок. 501) получил для p приближение 355/113 (p » 3,1415927). Оно осталось неизвестно европейцам и было вновь найдено нидерландским математиком Адрианом Антонисом только в 1585. Это приближение дает ошибку лишь в седьмом десятичном знаке.

Поиски более точного приближения p продолжались и в дальнейшем. Например, аль-Каши (первая половина 15 в.) в Трактате об окружности (1427) вычислил 17 десятичных знаков p . В Европе такое же значение было найдено в 1597 году. Для этого ему пришлось вычислять сторону правильного 800 335 168-угольника. Нидерландский ученый Лудольф Ван Цейлен (1540–1610) нашел для него 32 правильных десятичных знака (опубликовано посмертно в 1615), это приближение называется лудольфовым числом.

Число p появляется не только при решении геометрических задач. Со времени Ф.Виета (1540–1603) разыскание пределов некоторых арифметических последовательностей, составляемых по простым законам, приводило к тому же числу p . В связи с этим в определении числа p принимали участие почти все известные математики: Ф.Виет, Х.Гюйгенс , Дж.Валлис, Г.В.Лейбниц , Л.Эйлер . Они получали различные выражения для 241 в виде бесконечного произведения, суммы ряда, бесконечной дроби.

Например, в 1593 Ф.Виет (1540–1603) вывел формулу

В 1658 англичанин Уильям Броункер (1620–1684) нашел представление числа p в виде бесконечной непрерывной дроби

однако неизвестно, как он пришел к этому результату.

В 1665 Джон Валлис (1616–1703) доказал, что

Эта формула носит его имя. Для практического нахождения числа 241 она мало пригодна, но полезна в различных теоретических рассуждениях. В историю науки она вошла как один из первых примеров бесконечных произведений.

Готфрид Вильгельм Лейбниц (1646–1716) в 1673 установил следующую формулу:

выражающую число p /4 как сумму ряда. Однако этот ряд сходится очень медленно. Чтобы вычислить p с точностью до десяти знаков, потребовалось бы, как показал Исаак Ньютон, найти сумму 5 млрд чисел и затратить на это около тысячи лет непрерывной работы.

Лондонский математик Джон Мэчин (1680–1751) в 1706, применяя формулу

получил выражение

которая до сих пор считается одной из лучших для приближенного вычисления p . Чтобы найти те же десять точных десятичных знаков, потребуется всего несколько часов ручного счета. Сам Джон Мэчин вычислил p со 100 верными знаками.

C помощью того же ряда для arctg x и формулы

значение числа p было получено на ЭВМ с точностью до ста тысяч десятичных знаков. Такого рода вычисления представляют интерес в связи с понятием случайных и псевдослучайных чисел. Статистическая обработка упорядоченной совокупности указанного количества знаков p показывает, что она обладает многими чертами случайной последовательности.

Есть несколько забавных способов запомнить число p точнее, чем просто 3,14. Например, выучив следующее четверостишие, можно без труда назвать семь десятичных знаков p :

Нужно только постараться

И запомнить все как есть:

Три, четырнадцать, пятнадцать,

Девяносто два и шесть .

(С.Бобров Волшебный двурог )

Подсчет количества букв в каждом слове следующих фраз так же дает значение числа p :

«Что я знаю о кругах?» (p » 3,1416). Эту поговорку предложил Я.И.Перельман.

«Вот и знаю я число, именуемое Пи. – Молодец!» (p » 3,1415927).

«Учи и знай в числе известном за цифрой цифру, как удачу примечать» (p » 3,14159265359).

Учитель одной из московских школ придумал строку: «Это я знаю и помню прекрасно», а его ученица сочинила забавное продолжение: «Пи многие знаки мне лишни, напрасны». Это двустишие позволяет определить 12 цифр.

А так выглядит 101 знак числа p без округления

3,14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679.

В наше время с помощью ЭВМ значение числа p вычислено с миллионами правильных знаков, но такая точность не нужна ни в каких вычислениях. А вот возможность аналитического определения числа ,

В последней формуле в числителе стоят все простые числа, а знаменатели отличаются от них на единицу, причем знаменатель больше числителя, если тот имеет вид 4n + 1, и меньше в противном случае.

Хотя еще с конца 16 в., т.е. с тех пор, как сформировались сами понятия рациональных и иррациональных чисел, многие ученые были убеждены в том, что p – число иррациональное, но только в 1766 немецкий математик Иоганн Генрих Ламберт (1728–1777), основываясь на открытой Эйлером зависимости между показательной и тригонометрической функциями, строго доказал это. Число p не может быть представлено в виде простой дроби, как ни были бы велики числитель и знаменатель.

В 1882 профессор Мюнхенского университета Карл Луиз Фердинанд Линдеман (1852–1939) используя результаты, полученные французским математиком Ш.Эрмитом , доказал, что p – число трансцендентное, т.е. оно не является корнем никакого алгебраического уравнения a n x n + a n– 1 x n– 1 + … + a 1 x + a 0 = 0 с целыми коэффициентами. Это доказательство поставило точку в истории древнейшей математической задачи о квадратуре круга. Тысячелетия эта задача не поддавалась усилиям математиков, выражение «квадратура круга» стало синонимом неразрешимой проблемы. А все дело оказалось в трансцендентной природе числа p .

В память об этом открытии в зале перед математической аудиторией Мюнхенского университета был установлен бюст Линдемана. На постаменте под его именем изображен круг, пересеченный квадратом равной площади, внутри которого начертана буква p .

Марина Федосова

Уже много веков и даже, как ни странно, тысячелетий люди понимают важность и ценность для науки математической постоянной, равной отношению длины окружности к ее же диаметру. число Пи, до сих пор неизвестно, но к нему имели отношение самые лучшие математики на протяжении всей нашей истории. Большинство из них хотели выразить его рациональным числом.

1. Исследователи и истинные поклонники числа Пи организовали клуб, для вступления в который требуется знать наизусть достаточно большое количество его знаков.

2. С 1988 года празднуется «День числа Пи», который приходится на 14 марта. Готовят салаты, торты, печенья, пирожные с его изображением.

3. Число Пи уже переложили на музыку, при этом оно весьма неплохо звучит. Ему даже воздвигли памятник в американском Сиэтле перед зданием городского Музея искусств.

В то далекое время число Пи старались вычислить при помощи геометрии. То, что это число постоянно для самых разных окружностей, знали еще геометры в Древнем Египте, Вавилоне, Индии и Древней Греции, утверждавшие в своих работах, что оно всего лишь немного больше трех.

В одной из священных книг джайнизма (древняя индийская религия, которая возникла в VI в. до н. э.) упоминается, что тогда число Пи считалось равным корню квадратному из десяти, что в итоге дает 3,162... .

Древнегреческие математики проводили измерение окружности методом построения отрезка, а вот для того, чтобы измерить круг, им приходилось строить равновеликий квадрат, то есть фигуру, равную ему по площади.

Когда еще не знали десятичных дробей, великий Архимед нашел значение числа Пи с точностью 99,9%. Он открыл способ, который стал основой многих последующих вычислений, вписывал в окружность и описывал вокруг нее правильные многоугольники. В результате Архимед рассчитал значение числа Пи как отношение 22 / 7 ≈ 3,142857142857143.

В Китае, математик и придворный астроном, Цзу Чунчжи в V веке до н. э. обозначил более точное значение числа Пи, рассчитав его до семи цифр после запятой и определил его значение между числами 3, 1415926 и 3,1415927. Более 900 лет понадобилось ученым, чтобы продолжить дальше этот цифровой ряд.

Средние века

Известный индийский ученый Мадхава, который жил на рубеже XIV - XV веков, ставший основателем Керальской школы астрономии и математики, впервые в истории стал работать над разложением тригонометрических функций в ряды. Правда, сохранились всего лишь два его труда, а на другие известны лишь ссылки и цитаты его учеников. В научном трактате «Махаджьянаяна», который приписывают Мадхаве, указано, что число Пи равно 3,14159265359. А в трактате «Садратнамала» приведено число с еще большим количеством точных знаков после запятой: 3,14159265358979324. В указанных числах последние цифры не соответствуют правильному значению.

В XV веке самаркандский математик и астроном Ал-Каши вычислил число Пи с шестнадцатью знаками после запятой. Его результат считался наиболее точным в течение последующих 250 лет.

У. Джонсон, математик из Англии, одним из первых смог обозначить отношение длины окружности к ее диаметру буквой π. Пи - это первая буква греческого слова «περιφέρεια» - окружность. Но этому обозначению удалось стать общепринятым лишь после того, как им воспользовался в 1736 году более известный ученый Л. Эйлер.

Заключение

Современные ученые продолжают работать над дальнейшими вычислениями значений числа Пи. Для этого уже используют суперкомпьютеры. В 2011 г. ученый из Сигэру Кондо, сотрудничая с американским студентом Александром Йи, произвели правильный расчет последовательности из 10 триллионов цифр. Но до сих пор так и неясно, кто открыл число Пи, кто впервые задумался над этой проблемой и произвел первые расчеты этого, по-настоящему мистического числа.

С недавних пор существует элегантная формула для вычисления числа Пи, которую в 1995 году впервые опубликовали Дэвид Бэйли, Питер Борвайн и Саймон Плафф:

Казалось бы: что в ней особенного — формул для вычисления Пи великое множество: от школьного метода Монте-Карло до труднопостижимого интеграла Пуассона и формулы Франсуа Виета из позднего Средневековья. Но именно на эту формулу стоит обратить особое внимание — она позволяет вычислить n-й знак числа пи без нахождения предыдущих. За информацией о том, как это работает, а также за готовым кодом на языке C, вычисляющим 1 000 000-й знак, прошу под хабракат.

Как же работает алгоритм вычисления N-го знака Пи?
К примеру, если нам нужен 1000-й шестнадцатеричный знак числа Пи, мы домножаем всю формулу на 16^1000, тем самым обращая множитель, стоящий перед скобками, в 16^(1000-k). При возведении в степень мы используем двоичный алгоритм возведения в степень или, как будет показано в примере ниже, возведение в степень по модулю . После этого вычисляем сумму нескольких членов ряда. Причём необязательно вычислять много: по мере возрастания k 16^(N-k) быстро убывает, так что, последующие члены не будут оказывать влияния на значение искомых цифр). Вот и вся магия — гениальная и простая.

Формула Бэйли-Борвайна-Плаффа была найдена Саймоном Плаффом при помощи алгоритма PSLQ , который был в 2000 году включён в список Top 10 Algorithms of the Century . Сам же алгоритм PSLQ был в свою очередь разработан Бэйли. Вот такой мексиканский сериал про математиков.
Кстати, время работы алгоритма — O(N), использование памяти — O(log N), где N — порядковый номер искомого знака.

Думаю, уместно будет привести код на языке Си, написанный непосредственно автором алгоритма, Дэвидом Бэйли:

/* This program implements the BBP algorithm to generate a few hexadecimal digits beginning immediately after a given position id, or in other words beginning at position id + 1. On most systems using IEEE 64-bit floating- point arithmetic, this code works correctly so long as d is less than approximately 1.18 x 10^7. If 80-bit arithmetic can be employed, this limit is significantly higher. Whatever arithmetic is used, results for a given position id can be checked by repeating with id-1 or id+1, and verifying that the hex digits perfectly overlap with an offset of one, except possibly for a few trailing digits. The resulting fractions are typically accurate to at least 11 decimal digits, and to at least 9 hex digits. */ /* David H. Bailey 2006-09-08 */ #include #include int main() { double pid, s1, s2, s3, s4; double series (int m, int n); void ihex (double x, int m, char c); int id = 1000000; #define NHX 16 char chx; /* id is the digit position. Digits generated follow immediately after id. */ s1 = series (1, id); s2 = series (4, id); s3 = series (5, id); s4 = series (6, id); pid = 4. * s1 - 2. * s2 - s3 - s4; pid = pid - (int) pid + 1.; ihex (pid, NHX, chx); printf (" position = %i\n fraction = %.15f \n hex digits = %10.10s\n", id, pid, chx); } void ihex (double x, int nhx, char chx) /* This returns, in chx, the first nhx hex digits of the fraction of x. */ { int i; double y; char hx = "0123456789ABCDEF"; y = fabs (x); for (i = 0; i < nhx; i++){ y = 16. * (y - floor (y)); chx[i] = hx[(int) y]; } } double series (int m, int id) /* This routine evaluates the series sum_k 16^(id-k)/(8*k+m) using the modular exponentiation technique. */ { int k; double ak, eps, p, s, t; double expm (double x, double y); #define eps 1e-17 s = 0.; /* Sum the series up to id. */ for (k = 0; k < id; k++){ ak = 8 * k + m; p = id - k; t = expm (p, ak); s = s + t / ak; s = s - (int) s; } /* Compute a few terms where k >= id. */ for (k = id; k <= id + 100; k++){ ak = 8 * k + m; t = pow (16., (double) (id - k)) / ak; if (t < eps) break; s = s + t; s = s - (int) s; } return s; } double expm (double p, double ak) /* expm = 16^p mod ak. This routine uses the left-to-right binary exponentiation scheme. */ { int i, j; double p1, pt, r; #define ntp 25 static double tp; static int tp1 = 0; /* If this is the first call to expm, fill the power of two table tp. */ if (tp1 == 0) { tp1 = 1; tp = 1.; for (i = 1; i < ntp; i++) tp[i] = 2. * tp; } if (ak == 1.) return 0.; /* Find the greatest power of two less than or equal to p. */ for (i = 0; i < ntp; i++) if (tp[i] > p) break; pt = tp; p1 = p; r = 1.; /* Perform binary exponentiation algorithm modulo ak. */ for (j = 1; j <= i; j++){ if (p1 >= pt){ r = 16. * r; r = r - (int) (r / ak) * ak; p1 = p1 - pt; } pt = 0.5 * pt; if (pt >= 1.){ r = r * r; r = r - (int) (r / ak) * ak; } } return r; }
Какие возможности это даёт? Например: мы можем создать систему распределённых вычислений, рассчитывающую число Пи и поставить всем Хабром новый рекорд по точности вычисления (который сейчас, к слову, составляет 10 триллионов знаков после запятой). Согласно эмпирическим данным, дробная часть числа Пи представляет собой нормальную числовую последовательность (хотя доказать это достоверно ещё не удалось), а значит, последовательности цифр из него можно использовать в генерации паролей и просто случайных чисел, или в криптографических алгоритмах (например, в хэшировании). Способов применения можно найти великое множество - надо только включить фантазию.

Больше информации по теме вы можете найти в статье самого Дэвида Бэйли, где он подробно рассказывает про алгоритм и его имплементацию (pdf);

И, похоже, вы только что прочитали первую русскоязычную статью об этом алгоритме в рунете - других я найти не смог.